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Abstract

The asymmetric encryption methods are based on difficult problems in mathematics.
Let * be the free monoid over a finite alphabet X and R a binary relation on £*. The pair (Z,R) is called a Thue system.
The congruence generated by R is defined as follows:

e xuy <>y xvy, whenever x,y € X*and uRv or vRu.

o w " w, whenever ug, Uy, ..., Uy € Z*With, ug = w,u; g U, V0<i<n-—1Lu, =w'.

The word problem for R on X* is then following : given two words wy, w, € £*, do we have w; «<=z* w, ? [7]
In this paper we investigate on a public key cryptosystems based on the difficult word problem in free monoid, introduced
by Wagner and Magyarik in 1985. It's well known that the word problem is undecidable in general, meaning that there is
no algorithm to solve it. We introduce some cryptosystems based on the Thue Monoid Morphism Interpresentation where
the word problem is decidable in linear time.
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1. Introduction

Let =* be the free monoid over a finite alphabet £ and Ra binary relation on &*. The congruence

generated by R is defined as follows:
3 xuy <—p xvy, whenever x,y € X*and uRv or vRu.
o w " w, whenever ugy, Uy, ..., Uy € Z*With, uy = w,u; g U4, V0<i<n-—1Lu, =w'.

A presentation by generators and relations of a monoid M is a pair (Z, R) such that M is isomorphic to

the quotient of " by the congruence noted «»z* generated by R , i.e, M = X* /e p*.

The word problem for R on =" is then following : given two words wq,w, € %, do we have w; «>z* w;.
The word problem as introduced by Max Dehn in 1911 [7], in the 1950 s, Novikov and Boon independently
showed that there are finite monoid presentations whose word problem is undecidable.

A number of public key cryptosystems based on combinatorial group theory have been proposed since
the early 1980s.

The first proposal to use nonabelian groups in public key cryptography is due to Wagner and Magyarik
[10] in 1985. The cryptosystem are based on the hardness of the word problem for finitely presented monoids.
The importance of Wagner and Magyarik's scheme lies in its novelty, which commenced an interplay between
cryptography and combinatorial monoid theory.

The remainder of this paper is organized as follows. In Section 2, we begin with some elementary
material concerning of finitely presented monoids and Public key cryptography. In Section 3, we investigate
the public-key cryptosystems based on Thue Monoid Morphism Interpretation (TMMI). In Section 4, we give
the security of TMMI protocol. Finally, we draw our conclusions in Section 5.

2. Preliminaries

A monoid (M,-) consists of a set M together with a binary operation "-" on M such that

(a-(b-c)=(a-b) -cforalla,b,c € M. (associativity)

(ii) There existes an identity 1,, € Msuchthata-1,, =1, -a=a foralla € M.

We formally define an alphabet as a non-empty finite set. A word over an alphabet X is a finite sequence
of symbols of X. Although one writes a sequence as (g4,0>,...,dy,), in the present context, we prefer to write
it as 0,02,...0,,. The set of all words on the alphabet X is denoted by Z*and is equipped with the associative
operation defined by the concatenation of two sequences. The concatenation of two sequences a;a.. ..a, and
B1PB2. -Pm is the sequence a,a;...0n f182- -PBm-

The concatenation is an associative operation. The string consisting of zero letters is called the empty
word, written . Thus, €, a, B, aafa, aaafa are words over the alphabet {a, 8}. Thus the set " of words is
equipped with the structure of a monoid. The monoid X" is called the free monoid on X. The length of a word
w, denoted |w], is the number of letters in w when each letter is counted as many times as it occurs. Again by
definition, |e| = 0. For example |aafa| = 4 and |aaaBa| = 5. Let w be a word over an alphabet X. For
o € X, the number of occurrences of o in w shall be denoted by |w|,. For example |aafa|z =1 and
|aaaBal, = 4.

A mapping h:X* — A*, where X and A are alphabets, satisfying the condition

h(uv) = h(u)h(v), for all words u and v in £*, is called a morphism.
Define a morphism h, it suffices to list all the words h(c), where a ranges over all the (finitely many)
letters of X. If M is a monoid, then any mapping f: X — M extends to a unique morphism f:X* - M. For
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instance, if M is the additive monoid N, and f is defined by f (o) = 1 for each ¢ € X, then f(u) is the length
|u| of the word wu.
A binary relation on X" is a subset R € X* x Z*. If (x,y) € R, we say that x is related to y by R, denoted

xRy. The inverse relation of R is the binary reation R™* € ¥* x X*defined by yR™'x  (x,y) € R.

The relation Iy~ ={(x,X),x € Z* } is called the identity relation. The relation ( 2*)? is called the complete
relation.

Let RS ¥ x I* and S < X* x X* are binary relations. The composition of R and S is a binary
relation S o RCX™ x 3™ defined by: x(S o R)z & 3y € X* such that xRy and ySz.

A binary relation R on aset X" is said to be

- reflexive if xRx for all x in Z%;

- symmetric if xRy implies yRx;

- transitive if xRy and yRz imply xRz.

The relation R is called an equivalence relation if it is reflexive, symmetric, and transitive. And in this
case, if xRy, we say that x and y are equivalent.

Let R be a relation on a set =", The reflexive closure of R is the smallest reflexive relation R” on " that
contains R, that is,

»RCR";

» if R' is a reflexive relation on =*and R € R’, then R" C R'.

The symmetric closure of R is the smallest symmetric relation RS on X* that contains R, that is,

» R C R%;

» if R is a symmetric relation on X*and R € R’, then R € R'.

The transitive closure of R is the smallest transitive relation Rt on X" that contains R, that is,

» R CRY;

» if R is a transitive relation on Z*and R € R’,then R* € R'.

Let R be arelation onaset =*. Then

- RT=RUl g+ .

“RS=RUR™.

. Rt:Ullgz-ll—oo Rk.

A congruence on a monoid M is an equivalence relation = on M compatible with the operation of M, i.e,
forallmm' € M,u,ve M, m =m' = umv = um'v.
If h: Z* — A" is a morphism of monoids, Then Ker h is a congruence defined by:

Vu,v€EX:uKerfv e f(u) = f(v).
Let L be a language over Z, the syntactic congruence of L denoted by =, is defined by:
u=,ve (Vx,y€EX:xuy €L © xvy € L).

The quotient of X" by =, is, by definition, the syntactic monoid of L denoted M(L), i.e., M(L) = 2*/=,
A Thue system is a pair (Z, R) where X is an alphabet and R is a non-empty finite binary on £*, we write
xuy —pg xvy whenever x,y € ¥* and (u,v) ER. We write 4 —z" u if there exists a words
Ao, A1,..., A, € L* such that, A\g=A, 4; =5 4;44,VO<i<n-—1landA,=u.
Ifn=o0,wegetd =y, andifn =1, weget 1 — u. —5" is the reflexive transitive closure of —p.
The congruence generated by R is defined as follows:
» xuy <>y xvy whenever x,y € X*, and uRv or vRv;
> A ep*uwhenever A = Ag <=5 A1 op... = 4, = .
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5" is the reflexive symmetric transitive closure of <. The congruence class of w € £* with respect to
optis[wlo={x € Z:x <" w}. A monoid M is finitely generated if it is isomorphic to a monoid of
the form X*/<y". In this case, we also say that M is finitely generated by X , If in addition to X also R is
finite, then M is a finitely presented monoid.

The word problem for R on £* is then following : given two words w;, w, € £*, do we have w; <" w, ?
The word problem as introduced by Max Dehn in 1911, in the 1950's, Novikov and Boon independently
showed that there are finite monoid presentations whose word problem is undecidable.

Public-Key cryptography, also called asymmetric cryptography, was invented by Diffie And Hellman
more than forty years ago. In Public-Key cryptography, a user U has a pair of related keys (pK,sK): the key
pK is public and should be available to everyone, while the key sK must be kept secret by U. The fact that sK
is kept secret by a single entity creates an asymmetry, hence the name asymmetric cryptography.

Wagner and Magyarik build the TMMI protocol, the idea is transform a system of Thue (Z, R) for which
the word problem is undecidable in a Thue system (X, S) for which the word problem is decidable in linear
time.

Public-Key (pK): a finitely presented monoid (X,R), and two words wo,wy of X*, with wo, w4 are not
equivalent with respect to <= 5".

Secret-key (sK): a set of relations SSX*xX*, rendering the word problem in 2*/«<>¢" easy, with the
property that Vu,v € X", u «x"v=>u " v.

and satisfying also wg, w; are not equivalent with respect to «—¢".
Encryption: to encrypt b € {0,1}, choose a word w € X* with we=z* wy,.
Decryption: solve the easy word problem in 2*/«>¢* to find b such that weg* wy, [10].

3. Results

In the following proposition we give a condition on the relation of a Thue system to show that the
congruence generated by this relation is included in the congruence associated a morphism of monoids. Also
we use this included to present the public-key cryptosystems based on the Thue Monoid Morphism
Interpretation (TMMI).

Proposition 1: Let f: X* — M be a monoids morphism and R is a binary relation on a set £* suth that,
forall (r,s) € R, f(r) = f(s). Then <=,"C Kerf.

Proof: If f: ¥* — M is a morphism of monoids, Then Ker f is a congruence defined by:
Vu,v € Z:uKerf v & f(u) = f(v). Since forall (r,s) € R, f(r) = f(s), we have R € Kerf,
then «—;"C Kerf.

Proposition 2: Public-Key (pK): a finitely presented monoid (X,R), and two words wo,w; of X*, with
wo, W1 are not equivalent with respect to «<=z*.

Secret-key (sK): a morphism of monoids f: 2* — M and the word problem in X*/Kerf is easy, with the
property that Vu, v € X*,u <=, v= u Kerf v and satisfying also wo,w, are not equivalent with respect to
Kerf.
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Encryption: to encrypt b € {0,1}, choose a word w € Z* with we—p* wy,.
Decryption: solve the easy word problem in 2*/Kerf to find b such that w Kerfw;,.

Example 1: Consider the morphism of monoids f: {a, f}* = (Z, +) defined by:

fl@=1f(B)=-1f(e) =0.

And then, Yw € {a, f}" we have f(w) = |w|, — |w]|g.

Let X = {a, B}, R = {(aBafa, aap), (ap, €)}, we have f(afafa) = |afafal, -|afafal g=3-2=1,

faap) = |aapfl,-laaf] g =2 —1=1.And f(ap) = |al.-lafl g =1-1=0,

f(&) =lelq-lel g =0—0=0.Thenforall (r,s) € R, f(r) = f(s).

Consequently «=,*< Kerf.

Public-Key (pK): a finitely presented monoid (£,R), where ¥ = {a, 8}, R = {(aBaBa, aaf), (af, €)}. Let
wo = aafafa and w; = BafaBa , wo,w; are not equivalent with respect to «»z* , because
aafafa «—g* aa and fafafa «—g* Ba. (X, R, wy, wy) constitute a public-key.

Secret key (sK): the morphism of monoids f:{a, 8} = (Z, +) defined by:

fl@)=1,f(B) =-1,f(e) =0and <", =Kerf, i.e., «>,", is the congruence associated a morphism
of monoids f. We have wy, w, are not equivalent with respect to Kerf becouse f(w,) = 2 and

fw1) = 0,f(wo) # f(wo).

Encryption: for encrypt a bit b € {0,1}, Alice chooses a word c of {«, 8}" in the equivalence class of w;,
with respect to <", i. e, c € [w,] .- Where [w,] , - denotes the equivalence class of w, with respect to
<" and then sent to Bob. for example Alice chooses a word ¢ = afaBfaBaBa,

we have [c] o = [wi] o = [Bal oy

Decryption: upon receipt of a word ce {a, 8}* a Bob, since ¢ «=;* w;, and according to the result
—p"C Kerf , we have ¢ Kerf w,, then the message is decrypted 1.

In the following proposition we give a condition on the relation of a Thue system to show that the
congruence generated by this relation is included in the syntactic congruence class of any word modulo the
congruence associated a morphism of monoids. Also we use this included to present the public key
cryptosystems based on the Thue Monoid Morphism Interpretation (TMMI).

Proposition 3: Let f: 2* — M be a monoids morphism and R is a binary relation on a set X*suth that for all
(r,s) ER,f(r) = f(s). Then for all w € X*, the congruence generated by R is included in the syntactic
congruence of the equivalence class of w modulo Ker f .i.e,

Yu,v € X%, u " v SUS \%

wiger "

Proof: Since for all (r,s) € R, f(r) = f(s), we have R € Ker f, then «<—z"SKer f. Now we show that

—pfC= let (u,v) € X*xX*suth that u <" v, we check that u =, v, i.e,

==[wlker Ker

forall (x,y) € Z*xX*, xuy € [W]ger © xVy € [Wlker

We have xuy € [W]ger & xuy € Uelc;] .+, because «g*SKer f. Then 3i, € I suth that
xuy € [cio] ., then xuy <" ¢; . Furthermore u <" v implies that xuy <" xvy.
R

We have xuy <" ¢;, and xuy «g* xvy implies xuy <g" ¢; , then xvy € [wle,.
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A similar argument shows that if xvy € [w]g,, then xuy € [wlg,,. Finally <" =,

Ker®

Example 2: Let X = {a, 8}, R = {(aB,Ba)}and f : {a,B} — N, f(u) = |u|.

We have 2 /—p"={[f"a"] _,.+,(m,n) € N X N} and for all w € {a, B}", [W]ker={x € {a, B} |x| =

[w[}. Now we show that «—g"c=(,, ... let (u,v) € X*xX"suth that u <" v,

then there exists (p,q) € N X N:u «>¢" fPa? and v <" fPa¥, there (|u| 4 = |v| ¢ =q and |u| g =

[v| g = q), we check that u = v, e forall (x,y) € Z*xX*, xuy € [Wlker © xvy € [Wlker.

wiker
Let (x,y) € 2*xX2*, we have xuy € [Wlger © |xuy | = |wle|xvy [Fw|e xvy € [wlgk.r, because

(lul « = vl = qand |u] g = |v| g = q). Finally «>z"C =

= =[wlker*

Proposition 4: Public Key (pK): a finitely presented monoid (%,R), and two words wo,w; of X*, with
wo, W, are not equivalent with respect to «=3".

Secret key (sK): letw € X and to «>g"==,, i.e., «>¢* is the syntactic congruence class of word w

Ker’

with respect to the congruence associated a morphism of monoids. The word problem in 2*/ is easy,

= [Wlker

with the property that Vu,v € X*u «¢". v = u =| v.

Wlker

and satisfying also wo,w, are not equivalent with respect to =,

Ker’

Encryption: to encrypt b € {0,1}, choose a word w € X with we= ;™ wy,.

Decryption: solve the easy word problem in 2* /=y, . to find b such that w =, wp,.

Example 3: Public Key (pK): a finitely presented monoid (2, R), where 2 = {a, 8}, R = {(aB, fa)}. We
have Z*/—g* ={ ["a"] -, (m,n) ENXN}. Le wo = aaBpBp and w; = pBaaa, wo,w; are not
equivalent with respect to <= ", because (|wo| =2# |wy| (==3 and (lwo| z=47|wy| g =2).

(Z,R,wo,W;) constitute a public key.

Secret key (sK): letw = a®B° € {a,B}", f : {a, B} — N, f(w) = |u|. and >3 == (455, 1.8, "
is the syntactic congruence class of word a°3° with respect to the congruence associated f.

We have [a®B°]xer={x € {a, B}": |x| = |a°£°|=10} and

U S(espiger VS V(x,y) € {a, B} X{a B}:|xuy| =10 & |xvy | = 10.

The word problem in {a, B}"/=(45p5 .., IS €8sy, with the property that

* * —_
Vu,v € X'u gt v=u =565 Iker V-
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We have wo,w,; are not equivalent with respect to =4sps,,, becouse si x =aa and y =
then |xwoy | = 10 and |xw,y | =9.

Encryption: for encrypt a bit b € {0,1}, Alice chooses a word c of {&, f}* in the equivalence class of w;,
with respect to <", i. e, c € [wy] .- Where [w,] , - denotes the equivalence class of w, with respect to
<" and then sent to Bob. for example Alice chooses a word ¢ = afBafp,

we have [c] .+ = [wo] o = [B*a®] e

Decryption: upon receipt of a word ce {a, f}* a Bob, since ¢ «<=;* w;, and according to the result
R C= 4545y » WE hAVE € (4551, Wo, then the message is decrypted 0.

Security of TMMI protocol

An attack against TMMI does not allow to find exactly the Secret-Key. We will get rather a key that is
equivalent to it in the following direction:

We say that (Z,S") is an equivalent key to the Secret key (2, S) if any message encrypted with the Public
Key (Z, R, wy, wy) can be decrypted with (X, S"). This is the case for example if (2, S") checks the following
three conditions:

1. The word problem in 2*/«>g,™ is easy.

2.Vu,v € 2*,(u 5" v) = (U 5" V).

3. wo, w are not equivalent with respect to«yg,”.

Now we recall some keys that are equivalent to the Secret key (Z,S).

1. if &4, Ceo4*, then (X, S") is an equivalent key to the Secret key (Z, S).

2.if S'cx*xx*, such that «>,* =«>¢*, then (2, S") is an equivalent key to the Secret key (X, S).

4. Conclusion

In this work, based on the hardness of the word problem for finitely presented monoids, we investigate
the public key cryptosystems based on Thue Monoid Morphism Interpretation (TMMI). First, we give a
conditions on the relation of a rewrite system to show that the congruence generated by this relation is
included in the congruence associated a morphism of monoids, and the congruence generated by this relation
is included in the syntactic congruence class of any word modulo the congruence associated a morphism of
monoids. Also we use these includeds to present the public key cryptosystems based on the Thue Monoid
Morphism Interpretation (TMMI).
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