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Abstract 

The asymmetric encryption methods are based on difficult problems in mathematics. 

Let    be the free monoid over a finite alphabet   and   a binary relation on   . The pair       is called a Thue system. 

The congruence generated by   is defined as follows: 

         , whenever       and     or    . 

    
   , whenever              with,                               

The word problem for   on    is then following :  given two words         , do we have     
    ? [7] 

In this paper we investigate on a public key cryptosystems based on the difficult word problem in free monoid, introduced 

by Wagner and Magyarik in 1985. It's well known that the word problem is undecidable in general, meaning that there is 

no algorithm to solve it. We introduce some cryptosystems based on the Thue Monoid Morphism Interpresentation where 

the word problem is decidable in linear time. 
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1. Introduction 

    Let     be the free monoid over a finite alphabet   and  a binary relation on    
. The congruence 

generated by   is defined as follows: 
             , whenever       and     or    . 

    
   , whenever              with,                               

    A presentation by generators and relations of a monoid    is a pair       such that   is isomorphic to 

 the quotient of    
  by the congruence noted   

  generated by   , i.e,        
 . 

The word problem for   on    is then following :  given two words         
, do we have     

    .    
The word problem as introduced by Max Dehn in 1911 [7], in the 1950′s, Novikov and Boon independently 

showed that there are finite monoid presentations whose word problem is undecidable. 

    A number of public key cryptosystems based on combinatorial group theory have been proposed since 

the early 1980s. 

    The first proposal to use nonabelian groups in public key cryptography is due to Wagner and Magyarik 

[10] in 1985. The cryptosystem are based on the hardness of the word problem for finitely presented monoids. 

The importance of Wagner and Magyarik's scheme lies in its novelty, which commenced an interplay between 

cryptography and combinatorial monoid theory. 

    The remainder of this paper is organized as follows. In Section 2, we begin with some elementary 

material concerning of finitely presented monoids and Public key cryptography. In Section 3, we investigate 

the public-key cryptosystems based on Thue Monoid Morphism Interpretation (TMMI). In Section 4, we give 

the security of TMMI protocol. Finally, we draw our conclusions in Section 5.  

 

 

 

2. Preliminaries 

 

    A monoid       consists of a set   together with a binary operation " " on   such that 

    (i)                 for all        .          (associativity) 

    (ii) There existes an  identity     such that              for all    . 

    We formally define an alphabet as a non-empty finite set. A word over an alphabet    is a finite sequence 

of symbols of  . Although one writes a sequence as               , in the present context, we prefer to write 

it as           . The set of all words on the alphabet   is denoted by   
and is equipped with the associative 

operation defined by the concatenation of two sequences. The concatenation of two sequences        αn and 

       βm is the sequence        αn        βm. 

    The concatenation is an associative operation. The string consisting of zero letters is called the empty 

word, written  . Thus,                  are words over the alphabet      . Thus the set   
 of words is 

equipped with the structure of a monoid. The monoid   
 is called the free monoid on  . The length of a word 

 , denoted    , is the number of letters in   when each letter is counted as many times as it occurs. Again by 

definition,      . For example          and          . Let   be a word over an alphabet  . For 

   , the number of occurrences of   in   shall be denoted by     . For example           and 

          . 

    A mapping        , where   and   are alphabets, satisfying the condition 

 

              , for all words   and   in   
,  is called a morphism. 

Define a morphism  , it suffices to list all the words    ), where a ranges over all the (finitely many) 

letters of   . If  M is a monoid, then any mapping       extends to a unique morphism       . For 
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instance, if   is the additive monoid ℕ, and f is defined by        for each    , then      is the length 

    of the word  . 

A binary relation on    
 is a subset           If        , we say that   is related to   by  , denoted 

   . The inverse relation of   is the binary reation          defined by              . 

    The relation      ={(x,x),      } is called the identity relation. The relation        is called the complete 

relation. 

    Let             and              are binary relations. The composition of   and   is a binary 

relation       
   

 defined by:                such that     and    . 

    A binary relation   on a set    
  is said to be 

    ∙ reflexive if     for all   in    
; 

    ∙ symmetric if     implies    ; 

    ∙ transitive if     and     imply    . 

    The relation   is called an equivalence relation if it is reflexive, symmetric, and transitive. And in this 

case, if    , we say that   and   are equivalent. 

    Let   be a relation on a set    
. The reflexive closure of   is the smallest reflexive relation    on    

 that 

contains  , that is, 

    ▶     ; 

    ▶ if    is a reflexive relation on    
 and       then        

    The symmetric closure of   is the smallest symmetric relation    on    
 that contains  , that is, 

    ▶     ; 

    ▶ if    is a symmetric relation on    
and       then        

    The transitive closure of   is the smallest transitive relation    on    
 that contains  , that is, 

    ▶     ; 

    ▶ if    is a transitive relation on    
and       then        

    Let   be a relation on a set    
. Then 

    ∙   = ∪     . 

    ∙   = ∪      
    ∙   =       

   . 

A congruence on a monoid   is an equivalence relation   on   compatible with the operation of M, i.e, 

for all              ,              . 

    If         is a morphism of monoids, Then       is a congruence defined by: 

 

                          . 

 

    Let   be a language over  , the syntactic congruence of   denoted by     is defined by: 

 

                          . 

 

    The quotient of    
 by    is, by definition, the syntactic monoid of   denoted     , i.e.,                

A Thue system is a pair       where Σ is an alphabet and R is a non-empty finite binary on    
, we write  

          whenever         and        . We write    
   if there exists a words 

                 such that, λ =λ,                   and   =μ. 

    If    , we get    , and if    , we get     .   
  is the reflexive transitive closure of   . 

    The congruence generated by   is defined as follows: 

▶           whenever        , and     or    ; 

▶    
 μ whenever                    . 
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  is the reflexive symmetric transitive closure of   . The congruence class of        with respect to  

  
  is      

 ={     :       
   }. A monoid   is finitely generated if it is isomorphic to a monoid of 

the form       
 . In this case, we also say that   is finitely generated by Σ , If in addition to Σ also   is 

finite, then   is a finitely presented monoid. 

The word problem for   on    is then following :  given two words         , do we have     
    ?     

The word problem as introduced by Max Dehn in 1911, in the 1950's, Novikov and Boon independently 

showed that there are finite monoid presentations whose word problem is undecidable. 

    Public-Key cryptography, also called asymmetric cryptography, was invented by Diffie And Hellman 

more than forty years ago. In Public-Key cryptography, a user U has a pair of related keys (pK,sK): the key 

pK is public and should be available to everyone, while the key sK must be kept secret by U. The fact that sK 

is kept secret by a single entity creates an asymmetry, hence the name asymmetric cryptography. 

    Wagner and Magyarik build the TMMI protocol, the idea is transform a system of Thue (     for which 

the word problem is undecidable in a Thue system       for which the word problem is decidable in linear 

time. 

    Public-Key (pK): a finitely presented monoid (Σ,R), and two words w ,w  of    , with       are not 

equivalent with respect to   
 . 

    Secret-key (sK): a set of relations S   ×  , rendering the word problem in       
   easy, with the 

property that                  
       

  . 

 

    and satisfying also       are not equivalent with respect to   
 . 

    Encryption: to encrypt        , choose a word      with w  
   . 

    Decryption: solve the easy word problem in      
  to find b such that w  

        . 
 

 

 

3. Results 

 

    In the following proposition we give a condition on the relation of a Thue system to show that the 

congruence generated by this relation is included in the congruence associated a morphism of monoids. Also 

we use this included to present the public-key cryptosystems based on the Thue Monoid Morphism 

Interpretation (TMMI). 

 

Proposition 1: Let         be a monoids morphism and   is a binary relation on a set    suth that,  

for all                  . Then   
      . 

 

Proof: If         is a morphism of monoids, Then       is a congruence defined by: 

                          . Since for all                  , we have       ,  

then    
      . 

 

Proposition 2: Public-Key (pK): a finitely presented monoid (Σ,R), and two words w ,w  of    , with 

      are not equivalent with respect to   
 . 

Secret-key (sK): a morphism of monoids         and the word problem in   /     is easy, with the 

property that        ,   
     u      v and satisfying also w ,w  are not equivalent with respect to 

    . 
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Encryption: to encrypt        , choose a word      with w  
   . 

Decryption: solve the easy word problem in          to find b such that w       . 

 

Example 1: Consider the morphism of monoids                defined by:  

                     . 

And then,           we have               . 

Let        ,                       , we have                   -         =3-2=1, 

             -             . And            -            ,  

         -           . Then for all                  .  

Consequently    
      . 

Public-Key (pK): a finitely presented monoid (Σ,R), where        ,                       . Let 

          and          ,       are not equivalent with respect to    
 , because 

         
    and          

   .             constitute a public-key. 

Secret key (sK): the morphism of monoids                  defined by: 

                       and    
 , =    , i.e.,    

 ,  is the congruence associated a morphism 

of monoids f. We have       are not equivalent with respect to      becouse         and  

       ,           . 

Encryption: for encrypt a bit        , Alice  chooses a word   of        in the equivalence class of    

with respect to    
 ,, i. e,           

  where        
  denotes the equivalence class of     with respect to 

   
  and then sent to Bob. for example Alice chooses a word             ,  

we have        
         

         
 . 

Decryption: upon receipt of a word c        a Bob, since     
    and according to the result  

   
       , we have          , then the message is decrypted  . 

 

     

    In the following proposition we give a condition on the relation of a Thue system to show that the 

congruence generated by this relation is included in the syntactic congruence class of any word modulo the 

congruence associated a morphism of monoids. Also we use this included to present the public key 

cryptosystems based on the Thue Monoid Morphism Interpretation (TMMI). 

 

Proposition 3: Let         be a monoids morphism and   is a binary relation on a set   suth that for all 

                 . Then for all     , the congruence generated by R is included in the syntactic 

congruence of  the equivalence class of w modulo     f .i.e,  

            
   u       

v. 

Proof: Since for all (                , we have       f, then    
       . Now we show that 

   
         

, let          ×  suth that     
  , we check that         

 , i.e,  

for all           ×                           

We have                         
    , because    

       . Then       suth that   

        
 
   

 , then        
    

. Furthermore     
   implies that        

    . 

We have        
     and        

     implies        
    , then            . 
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A similar argument shows that if             then            . Finally    
          

. 

 

Example 2: Let        ,             and           ℕ         . 
 

    We have      
 ={         

 ,      ℕ  ℕ} and for all                ={             

  |}. Now we show that    
         

, let          ×  suth that     
  ,  

then there exists       ℕ  ℕ :u    
      and v    

     , there (               and       

       ), we check that         
 , i.e, for all           ×                          .  

Let           ×   , we have                      | |     |=|w|             , because 

(              and              ).  Finally    
          

. 

 

Proposition 4: Public Key (pK): a finitely presented monoid (Σ,R), and two words w ,w  of    , with 

      are not equivalent with respect to   
 . 

Secret key (sK): let       and  to   
 =       

, i.e.,   
   is the syntactic congruence class of word   

with respect to the congruence associated a morphism of monoids. The word problem in           
 is easy, 

with the property that          ,   
            

 . 

and satisfying also w ,w  are not equivalent with respect to        
. 

Encryption: to encrypt        , choose a word      with w  
   . 

Decryption: solve the easy word problem in           
 to find b such that         

  . 

 

Example 3: Public Key (pK): a finitely presented monoid      , where        ,            . We 

have       
 ={          

 ,       ℕ  ℕ }. Le           and         ,       are not 

equivalent with respect to   
 , because (      =2       ==3 and (      =4≠       2). 

 (Σ,R,w ,w ) constitute a public key. 

Secret key (sK): let               ,           ℕ         . and   
   =          

, i.e.,   
    

is the syntactic congruence class of word      with respect to the congruence associated f.  

We have          ={                  |=10} and  

           
                                           . 

The word problem in                   
 is easy, with the property that  

        ,   
                

 . 
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We have w ,w  are not equivalent with respect to           
 becouse si      and      

then            and         9. 

Encryption: for encrypt a bit        , Alice  chooses a word   of        in the equivalence class of    

with respect to    
 ,, i. e,           

  where        
  denotes the equivalence class of     with respect to 

   
  and then sent to Bob. for example Alice chooses a word         ,  

we have        
         

           
 . 

    Decryption: upon receipt of a word c        a Bob, since     
    and according to the result  

   
            

 , we have             
   , then the message is decrypted  . 

 

Security of  TMMI protocol 

 

    An attack against TMMI does not allow to find exactly the Secret-Key. We will get rather a key that is 

equivalent to it in the following direction: 

    We say that        is an equivalent key to the Secret key       if any message encrypted with the Public 

Key             can be decrypted with       . This is the case for example if        checks the following 

three conditions: 

    1. The word problem in       
  is easy. 

    2.        ,    
          

     . 

    3.       are not equivalent with respect to   
 . 

    Now we recall some keys that are equivalent to the Secret key (Σ,S). 

    1. if    
     

 , then        is an equivalent key to the Secret key      . 

    2. if      ×  , such that    
  =  

 , then        is an equivalent key to the Secret key      . 

 

 

4. Conclusion 

 

    In this work, based on the hardness of the word problem for finitely presented monoids, we investigate 

the public key cryptosystems based on Thue Monoid Morphism Interpretation (TMMI). First, we give a 

conditions on the relation of a rewrite system to show that the congruence generated by this relation is 

included in the congruence associated a morphism of monoids, and the congruence generated by this relation 

is included in the syntactic congruence class of any word modulo the congruence associated a morphism of 

monoids. Also we use these includeds to present the public key cryptosystems based on the Thue Monoid 

Morphism Interpretation (TMMI). 
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