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1 Introduction 

Software evolution refers generally to progressive change in 
the software’s properties or characteristics (Lehman and 
Belady, 1985). Managing software change is the key 
process in software evolution. This process of change in one 
or more of their attributes leads to the emergence of new 
properties or to improvement, in some sense (Lehman and 
Ramil, 2007). Therefore, software evolution should not be 
treated by an ad hoc or unstructured process (Lehman and 
Belady, 1985). This is why, a lot of techniques and more 
specifically models have been proposed to manage the 
software evolution in a reliable and organised way along its 
life cycle. The research efforts spent in the software 
evolution topic show the importance of the domain (Pan  
et al., 2013; Hammad et al., 2014). 

Although there are a large number of evolution 
techniques for the different programming paradigms 
(procedural software, object-oriented software, …, etc.), 
seldom effort has been spent for aspect-oriented (AO) 
software evolution. To overcome this problem is a hot topic. 
Aspect-oriented programming (AOP) (Kiczales et al., 1997) 
is a technique for modularising crosscutting concerns. 
AspectJ (The AspectJ Team, 2012) is the most popular AO 
language. It constitutes an extension of Java. The AspectJ 
program can be divided into two parts: base code which 
includes classes, interfaces and other language constructs as 
in Java, and aspect code which includes aspects for 
modelling crosscutting concerns in the program. Each 
aspect which is woven at a specific set of join points is 
solely responsible for a particular crosscutting concern 
(Kiczales et al., 1997). 
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In spite of the more advanced modularisation 
mechanisms (Suganthi and Nadarajan, 2013), AO programs 
still suffer from evolution problems. According to the study 
of Tourwé et al. (2003), “current aspect oriented software 
design (AOSD) technologies deliver applications that are as 
hard, or perhaps even harder, to evolve than was the case 
before…”. One observed characteristic of AOP is that it 
results in a large number of additional (coarse-grained to 
fine-grained) system units (aspects) ready to be composed 
to the final application. With this growing number of system 
units, the dependencies between them become vast and 
tangling (crosscutting relationships are difficult to depict 
cleanly and effectively). Aspects are not explicitly invoked 
but instead, are implicitly invoked (Xu et al., 2004). So, 
changes introduced with AOP are not visible directly in the 
base system’s source code, making program comprehension 
more difficult. Aspects are usually stored in separate files; 
but the effects of this code can influence the whole system 
(Vollmann, 2002). To resume up, modelling AO program 
evolution involves more complex relationships than in the 
traditional ones (object-oriented, procedural…). 

The aim of our paper is to propose and illustrate an 
efficient evolution model for AO software, and specifically, 
for the AspectJ source code. The main contributions of this 
paper are summarised as follows: 

• Modelling the AO source code: In our proposal, the AO 
(AspectJ) source code is modelled as a coloured graph 
(Heckel et al., 2002). Our model represents an AO 
system at an abstraction level of the system components 
and the different relations between them. 

• Change modelling: Define rules to model changes to 
the AO system. Describing what kind of changes can be 
made on the model. These changes are formalised as 
rewriting rules (Ehrig et al., 2006) on the coloured 
graph. 

• A prototype tool that automates the reverse-engineering 
of the AspectJ source code to a coloured graph. 

The rest of the paper is organised as follows. In the next 
section, we give the background used in this paper.  
Section 3 presents the overview of our approach. Section 4 
gives the model (coloured graph) representing the AO 
source code. In Section 5, we explain how change requests 
can be formulated as rewriting rules. Section 6 details our 
tool validation as well as our experimentations. We pass 
briefly on the related work in Section 7. Finally, we 
conclude our discussion and present the future work in 
Section 8. 

2 Background 

Before we detail our evolution model for AO software, 
some basic background has to be presented. This section 

provides the basic concepts of an AO source code and more 
specifically AspectJ programming language, and then we 
pass briefly on the foundations of the algebraic graph 
rewriting formalism. 

2.1 Foundations of the AspectJ language 

In this paper, we use AspectJ as our target language to show 
the basic idea of our evolution model for AO software. The 
choice of AspectJ is motivated by its wide popularity, 
mature language design, industrial-strength tool support and 
by its nature as an extension of Java. Before presenting our 
approach, we first briefly introduce the background of 
AspectJ semantics. More information about AspectJ can be 
found in The AspectJ Team (2012). 

The decomposition of an AspectJ application makes 
appear: 

• The base code that defines the set of the services (i.e., 
functionalities) achieved by the application. In other 
words, the code corresponds to the ‘what’ of the 
application. 

• Several complementary aspects that specify the 
mechanisms governing the execution of the application, 
i.e., the non-functional aspects defining the ‘how’ 
(synchronisation, persistence or security). The aspects 
are used to regroup choices of implementation that have 
an impact on the whole system and that would be 
scattered otherwise through the whole code. 

To illustrate the fundamental concepts of AspectJ language, 
we refer to the example in Figure 1. This program changes 
the monitor to refresh the display as needed. It contains an 
aspect UpdateDisplay that updates the display when objects 
move, and a class Point. 

Figure 1 The program UpdateDisplay (see online version  
for colours) 
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Table 1 Kinds of join points 

Join point Pointcut designator Description 

Method call call(MethodPattern) When a method is called 
Method execution execution(MethodPattern) When the method’s body is executed 
Constructor call call(ConstructorPattern) When a constructor is called 
Constructor execution execution(ConstructorPattern) When a constructor’ s body is executed 
Static initialiser execution staticinitialisation(TypePattern) When the static initialisation of a class is executed 
Object pre-initialisation preinitialisation(ConstructorPattern) Before the initialisation of the object 
Object initialisation initialisation(ConstructorPattern) When the initialisation of an object is executed 
Field reference get(FieldPattern) When a non-constant attribute of a class is referenced 
Field set set(FieldPattern) When an attribute of a class is modified 
Handler execution handler(TypePattern) When a treatment of an exception is executed 
Advice execution adviceexecution() When the code of an advice is executed 

 
AspectJ provides new features for modularisation, in 
particular when adding new functionality to an existing 
system. 

The novel features can be classified into two groups, 
one influence the dynamic behaviour of the base code by 
injecting new code when certain events occur in its 
execution: join point, pointcut, and advice. The second 
group of features allows one to statically add new members 
to classes: introduction. So, AspectJ extended Java through 
additional keywords to support AOP concepts: 

• Join points: they are the places where the crosscutting 
actions take place. They represent well-defined points 
in the execution of a program, such as method calls, 
object field accesses and so on. The purpose of the 
AspectJ language is allowing the programmer to 
precisely and succinctly identify and manipulate  
join-points. Table 1 describes the kinds of join points, 
for every join point a specific pointcut designator is 
used. 

• Pointcut: after we identify the join points useful for a 
crosscutting functionality, we need to select them  
using the pointcut construct. A pointcut is a Boolean 
expression over a fixed set of predicates and the 
operators; and (&&), or (||) and not (!). It selects join 
points based on a given criteria, such as method names 
and so on (Table 1), and collects context at those 
points. Pointcuts serve to define which advice has  
to be applied. 

• Advice: an advice represents a program module  
which is to be executed at the designated join points. 
There are three types of advices before, after (after 
returning/after throwing) and around, which 
correspond to the program modules to be executed 
prior, after or instead of the designated events, 
respectively. The body of an advice is much like a 
method body – it encapsulates the logic to be executed 
upon reaching a join point. In contrast to the methods 
of traditional object-oriented languages, advices are not 
called explicitly. Instead, the execution of an advice is 
automatically ‘triggered’ when the control flow reaches 
the join point that is designated (Vollmann, 2002). 

• Introduction (inter-type declaration): introductions  
are used to crosscut the static type structure of classes. 
That is, they insert additional class members like 
constructors, methods, and fields into classes as  
if they were declared in the classes themselves.  
They may even change the class’s super-class and its 
super-interface, respectively. 

• Aspect: it is the central unit in AspectJ, in the same way 
that a class is the central unit in Java. It contains the 
code that expresses the weaving rules for both dynamic 
and static crosscutting. Additionally, aspects can 
contain data, methods, and nested class members, just 
like a normal Java class. Every aspect is destined to be 
developed in an independent way then integrated to an 
application by a process called ‘aspect weaving’. 

If we compare the above concepts with the program  
in Figure 1, we distinguish: one aspect named 
‘UpdateDisplay’. This last contains a pointcut declared with 
the name ‘move’. Which specifies two join points of the 
type Method call; ‘when the method setX is called’, and 
‘when the method setY is called’ (class Point’s methods). 

The two are joined with the operator ‘or (||)’. And two 
advices (before, after). Besides, it contains three 
introductions: it introduces an attribute ‘name’ and two 
methods ‘setName’, ‘getName’ to the class ‘point’. 

2.2 Algebraic graph rewriting 

The main idea of the algebraic approach to graph rewriting 
(Ehrig et al., 2006) is to give an abstract algebraic 
characterisation of attributed coloured graphs (Heckel et al., 
2002). A coloured graph can be formalised as follows: 

• Coloured graph: Formally, a coloured graph,  
for example, G, is represented by a 6-tuple as:  
G = {NG; AG; sG; tG; m1; m2}. Here, NG denotes the set 
of nodes, AG denotes the set of edges; sG is a mapping 
that maps the edges to their sources and tG maps them 
to their targets. m1 and m2 are mappings that map the 
nodes and the edges in the graph to the fixed alphabets 
of node and edge colours, respectively. The colours are 
very important to give a semantic description of the 
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element (node, edge). Without names (colours) it would 
be hard to identify the elements and their 
interrelationships. 

• Graph rewriting: The calculus of graph transformation 
(graph rewriting) has a solid background. In this paper 
we present only as much theoretical background as 
needed to understand our approach. From Figure 2 
(Blomer et al., 2012), a graph rewrite rule consists of a 
tuple L → R, whereas L the left hand side (LHS) of the 
rule is called pattern graph and R the right hand side 
(RHS) of the rule is the replacement graph. Moreover, 
we need to identify graph elements (nodes or edges) of 
L and R for preserving them during rewrite. This is 
done by a preservation morphism r mapping elements 
from L to R; the morphism r is injective, but needs to 
be neither subjective nor total (Blomer et al., 2012). 

The transformation is done by the application of a rule to a 
host graph H. To do so, we have to find an occurrence of the 
pattern graph in the host graph. Mathematically speaking, 
such a match m is an isomorphism from L to a sub graph of 
H. This morphism may not be unique, i.e., there may be 
several matches. 

Figure 2 Basic idea of graph rewriting 

 

Afterwards we change the matched spot m (L) of the host 
graph, such that it becomes an isomorphic sub graph of the 
replacement graph R. Elements of L not mapped by r are 
deleted from m (L) during rewrite. Elements of R not in the 
image of r are inserted into H; all others (elements that are 
mapped by r) are retained. The outcome of these steps is the 
resulting graph H’. The rewrite rules can be specified with a 
textual (Blomer et al., 2012; Glauert et al., 1997) or 
graphical (Schultzke and Ermel, 2012) manner. 

Potentially, additional constraints as to when a rule 
should or should not be applicable may be specified as 
attribute conditions (ACs), or negative application 
conditions (NACs). A NAC is a graph pattern which must 
not be present in the host graph for the rule to be deemed 
applicable. ACs are Boolean expressions which may appear 
in order to express constraints on attribute values. The 
labels prefixing the nodes and edges must be used for 
identification purposes, meaning a node (or edge) bearing 
the same label in LHS and RHS (and possibly NAC) refers 
to the same node (or edge) in the host graph (e.g., Figure 7). 

A set of graph rewriting rules, together with a  
type graph (Corradini et al., 1996), is called a graph 
transformation system (GTS). One of the main static 
analysis facilities for GTSs is the check for conflicts and 

dependencies between rules and transformations. We argue 
that the existing theoretical results for graph transformation 
can advantageously be used for analysing potential conflicts 
and dependencies in AO software evolution. 

3 Overview of our approach 

In this section of the paper, we present the overview of our 
proposed evolution model for AspectJ source code. AO 
software evolution can be defined as the process of 
progressively modifying the elements of an AO software 
system in order to improve or maintain its quality over time. 
The main idea of our proposal is to accurately model how 
this software evolves by using a more abstract and formal 
format. 

We use graph transformation (graph rewriting) (Ehrig  
et al., 2006) as a formal technique to give a formal 
semantics to our evolution model and to analyse it 
rigorously. The analogy between AO software evolution 
and graph transformation is quite natural: an AO software 
system can be expressed as a graph containing a  
set of components interrelated by connectors. Graph 
transformations allow us to express the evolution of these 
software graphs in a precise way. In addition, it enables 
formal analysis and reasoning about AO software evolution. 
Mehner et al. (2009) state that “The formal technique helps 
to make the problems explicit. It directs the developer to the 
problematic parts of a model. It helps in understanding 
aspect-oriented compositions and it helps in reasoning 
effectively about the crosscutting”. 

Figure 3 Overview of our approach (see online version  
for colours) 

 

Figure 3 depicts the overview of our approach, which can be 
divided in two main steps: 

1 as presented in Figure 3(a), the AspectJ source code is 
represented as an attributed coloured graph (Heckel  
et al., 2002), and the changes to the software are 
formalised as rewriting rules that transform the graph G 
to a graph G’; in order to achieve the evolution requests 
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2 the software maintainer modifies the coloured graph of 
the AspectJ source code by applying sequences of 
rewrite rules in a certain order [Figure 3(b)]. 

The changes are presented in a formal format as rewriting 
rules. In contrast to the text format of the change, the 
rewrite rule is more accurate and meaningful, because it 
contains the full information about the change: 

1 Where it is applied: the pre-condition of the rule gives 
the parts of the graph that will be subject to change, i.e., 
the changed elements and their related entities. 

2 How it is applied: the post-condition of the rule shows 
the altered parts of the graph after application of he 
rule. 

3 When it is applied: the different conditions that we can 
formulate for the applicability of the rule (NAC, AC, 
…, etc.). If one of the conditions is not verified, the rule 
(change) will not be applied. 

This rich format facilitates the comprehension of the change 
(where, how and when), and thereafter the software 
evolution. 

The obvious first step towards our goal for representing 
AO software evolution by graph rewriting is the 
introduction of a suitable graph representation of AspectJ 
programs: one needs to decide which entities are 
represented by nodes, which relationships are represented 
by edges, and which information is represented by 
properties of nodes and edges. This is discussed in the next 
section. 

4 Program modelling 

At the first step our model aims to define an abstract 
representation of the AspectJ source code. In contrast to the 
text representation of the source code, the abstraction gives 
a more comprehensible and global overview of all software 
artefacts and their relationships eliminating the fine-grained 
details. This facilitates the evolution tasks: change impact 
analysis, change propagation, …, etc. 

In our approach, the AspectJ source code is modelled by 
an attributed coloured graph (Heckel et al., 2002). This last 
is generated directly from the AspectJ source code. We feel 
that for our purpose, the graph-based approach is very 
suitable. In view of the wide acceptance of graph-like 
representations in modelling software, it seems natural and 
interesting to use graph rewriting as the basis for the desired 
evolution model. 

Graphs are based on a well understood mathematical 
foundation ‘graph theory’ (Godsil and Royle, 2001). This 
makes them very interesting from a formal point of view. 
From a practical point of view, graphs are also very  
useful, since they are used often as an underlying 
representation of arbitrarily complex software artefacts and 
their interrelationships (Mens, 2001). 

 

In order to formally specify the AspectJ source code as a 
coloured graph, we should have to present the meta-model 
of the proposed ‘coloured graph’. This meta-model 
guarantee the consistency of the model (graph) to every 
transformation, which specifies what it means for a model 
to be valid (well formed). We use therefore; a type graph 
(Corradini et al., 1996) that plays the role of a meta-model. 
This type graph (class diagram), shown in Figure 4, 
specifies how to create well-formed coloured graph of 
AspectJ software. Any well-formed AspectJ source code 
can be represented as a graph that conforms to this type 
graph. 

We can detect that this type graph is the union of two 
parts: the base code sub-graph and the aspect(s) 
subgraph(s). These two parts are related with different 
dependence edges. In the following, we give the details of 
the different elements of the AspectJ type graph  
(meta-model). 

4.1 The base code sub-graph 

The base code of the AspectJ source code is an object 
oriented program. This last consists of source code entities 
and their dependencies. In our representation, the nodes 
represent the entities of the program and the edges are theirs 
dependencies. As discussed before (Section 2.2), an 
attributed coloured graph has a pair of colour alphabets, one 
to colour the edges and one to colour the nodes. The 
elements of the node colour alphabet for the base code are 
the following: 

• Class: «Name», «Visibility» (is one of: abstract, 
private, protected or public). 

• Attribute: « Name», «Visibility», « Type» 

• Method: «Name», «Visibility» 

• Parameter: «Name», « Type» 

• Return value: « Type». 

Furthermore, the edges describe the relationships 
(dependencies) between these entities as presented in  
Table 2. The relationships can be classified into three 
classes: 

• The first class of relationships depicts which attributes 
and methods belong to a class. It is also important for 
this model to show the parameters and the return values 
that methods take or return. 

• The second class of relationships shows the connection 
between classes. Here, relationship is one of 
association, aggregation, generalisation, or 
composition. 

• The third class of relationships captures the object 
relations (calls). This type of relationship is important 
to include in our model because they specify which 
methods and parameters are affected by the changes 
caused by evolution requests. 
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Figure 4 Type graph of the AspectJ model (see online version 
for colours) 

 

Table 2 Edge colours of the base code sub-graph 

Source node Target node Edge colour Attribute 

Attribute Contains - 
Method Contains - 

Class 

Class Relationship Type 
Parameter Method Takes-parameter - 

Return value Returns - Method 
Method Calls - 

4.2 The aspect sub-graph 

An aspect is an encapsulation unit. It consists also of entities 
and dependencies. Every aspect of the system is also 
modelled with a coloured sub-graph. This last is similar to 
the sub-graph that models the base code program, but we 
must add other concepts proper to the AspectJ source code. 
The elements of the node colour alphabet are: 

• Aspect: «Name», «Visibility» 

• Attribute : « Name», «Visibility», « Type» 

• Method: «Name», «Visibility» 

• Parameter: «Name», « Type» 

• Return value: « Type » 

• Pointcut: «Name», «Visibility» 

• Advice: « Pointcut», « Kind» (is one of: before/after 
returning/after throwing/after/around) 

• Introduction. 

Table 3 groups the different dependencies in the aspect  
sub-graph. For every edge, we define its source/target node, 
as well as the colour used and the attribute(s) needed. 

4.3 Modelling the global system 

In order to model the entire AspectJ source code, we must 
give a global overview of the different entities of the 
program and theirs dependencies. 

Table 3 Edge colours of the aspect sub-graph 

Source node Target node Edge colour Attribute

Attribute Contains - 
Method Contains - 
Pointcut Contains - 
Advice Contains - 

Introduction Contains - 

Aspect 

Aspect Relationship Type 
Method Calls - Method 

Return value Returns - 
Method Takes-parameter - 
Pointcut Takes-parameter - 
Advice Takes-parameter - 

Parameter 

Pointcut Advices - 
Advice around 
→ Return value 

Returns - Advice 

Method Calls - 
Attribute Introduces-attribute - Introduction 
Method Introduces-method - 

To integrate the different sub-graphs that represent the 
classes and the aspects, we need three types of edges,  
Table 4 describes these edges: 

• Crosscuts: this type of edges links the pointcut of the 
aspect with its join point(s). They must show the 
information about the join point type: method 
call/method execution… (Table 1). 

• Introduced-to: this type of edges links the methods or 
attributes introduced by the aspect with the class(s) 
where they are introduced to. 

• Calls: these edges present the calls between aspect’s 
methods/advices to the base code methods, i.e., a 
method (advice) of an aspect can use the methods of a 
class to perform a specific treatment. Besides of the 
constraints between nodes and edges presented above, 
the type graph (Figure 4) expresses the following 
constraints on the instance graphs: 
1 Constraints of multiplicity on the edges: For 

example, every pointcut or advice is contained in 
precisely only one aspect. A class contains zero or 
several attributes and methods, the method has one 
return value and the return value is related to one 
method, …, etc. 
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2 Constraints of multiplicity on the nodes: In the type 
graph considered, we did not define constraints of 
multiplicity on the nodes. However, we could have 
decided to permit the graphs that contain at least a 
node of type aspect (while attaching the cardinality 
of 1..* to the aspect), and so on. 

3 Constraints of attributes: The specificities of the 
components of the program, as the types are 
represented mainly on the edges and the nodes by 
attributes that are mainly string of characters. 

An AspectJ source code can now be specified formally as a 
graph conforming to the type graph, together with all of its 
graph constraints. An example is given in Figure 5. It shows 
a graph representing the AspectJ program ‘UpdateDisplay’ 
of Figure 1 (this graph has been generated by our convertor 
tools, see Section 6). In this figure, we can see that there are 
three sub-graphs: in the LHS of the figure, we depict the 
coloured graph of the class point, and in the RHS the 
coloured graph of the aspect UpdateDisplay. The two  
sub-graphs are related with five dependence edges: two of 
the type crosscut and three of the type introduced-to. At the 
bottom of the figure, we depict the sub-graph of the class 
‘display’, its method update is called by the advice after 
move (call edge). 

Table 4 Dependence edges 

Edge colour Source node Target node Attribute 

Aspect’s method Class’s 
method 

- Calls 

Advice Class’s 
method 

- 

Crosscuts Pointcut Class’s 
method 

Type 

Introduced-to Method, attribute 
introduced by the 

aspect 

Class - 

4.4 Discussion 

The representation of the AspectJ source code as a unique 
graph does not avoid the modularity of the code. It is very 
important to preserve the separation of crosscutting 
concerns when modelling the AO program, the primary 
motivation behind AOP. Our proposal maintains strict 
separation of base-code and crosscutting concerns in the 
proposed source-code model, i.e., every concern (aspect) is 
modelled as a coloured graph. The weaving is presented as 
dependence arcs between the base code sub-graphs and 
aspect sub-graphs. So, it is very easy to distinguish between 
the base code and the crosscutting concerns (aspects) of the 
software. In summary, the proposed evolution model for 
AspectJ source code preserves the modularity of the  
aspect-oriented paradigm, at the same time it makes more 
visible and clear the dependencies between the crosscutting 
concerns of the system, which is note an easy task with the 
plain text representation of the AspectJ source code. 

5 Change modelling 

The aim of our work is not just to formalise the evolution 
operations but to automate their application too. While 
AspectJ source code is graphically formalised by coloured 
graph, evolution requests (changes) are mapped to graph 
rewriting rules. A rewrite rule changes graphically 
(automatically) the sets of entities and dependencies of a 
program to evolve it; where the entities are considered as 
nodes and the dependencies are the edges between the 
program entities. Like graphs, graph rewriting is very 
intuitive in use. Nevertheless, it has a firm theoretical basis. 
These theoretical foundations of graph rewriting can assist 
in proving correctness and convergence properties of the 
AO software evolution. We represent changes to the 
program as explicit rewriting rules to its coloured graph. 
When a change rewrite rule is applied it takes as input a 
program state and returns an altered program state. 

We have two types of change operations: 

1 Atomic change operations: The basic evolution 
operations (changes) that will serve as foundations to 
the creation of more complex operations. The main 
atomic change operations are the addition and the 
deletion operations, since we believe that change 
operation can be modelled by deleting the old entity  
(or dependency) and adding the new one. 

 Consequently, the atomic rewriting rules are: 
• addition rule: add a new node (edge) to the 

program graph 
• deletion rule: deletes an existing node and all its 

dependencies, or the deletion of just an edge. 

2 Composite change operations: the atomic change 
operations can be combined to realise various evolution 
requests. The combination of several basic operations 
will be able to give birth to other evolution operations, 
or to an evolution process. For example, an evolution 
request that requires moving a pointcut from aspect A 
to aspect B consists in deleting it from A and adding it 
to B. Besides, we have to move the advice(s) related 
with this pointcut to aspect B also, or we just delete it 
(them) according to the change request. These atomic 
changes can be grouped in a single ‘move pointcut 
change’. This is practically performed via the rule 
sequence concept. This last is the union of all the rules 
formulated for a specific evolution request, applied in a 
certain order just like an algorithm. 

 Starting from the definitions in the Section 2.2, we can 
give a precise and clear meaning for the graph rewriting 
system concepts that describe our AspectJ evolution 
model. 

Table 5 gives the mapping of graph transformation concepts 
to the AspectJ software evolution. 
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Table 5 AspectJ software evolution as a GTS 

Graph transformation 
concepts AspectJ evolution concepts 

Host graph AspectJ coloured graph. 
Rewriting rule The evolution operation that 

presents the change, which must be 
done on the software. 

Left hand side (LHS) of 
the rule 

The sub-graph related to the change 
request, i.e., the entity (s) related to 
the change and their relationships. 

Right hand side (RHS) 
of the rule 

The sub-graph that presents the 
LHS after evolution. Modify the 
LHS in order to meet the change 

request. 
LHS∩RHS The graph part that must be 

unchanged, which is not touched by 
the evolution request. 

LHS\ (LHS∩RHS) The graph part which shall be 
deleted. Represent the elements 

touched by the evolution request. 
RHS\ (LHS∩RHS) The graph part which shall be 

created. The changed elements after 
evolution. 

Sequence rule The union of all the rules 
formulated for a specific evolution 
request, applied in a certain order. 

Graph transformation 
system GTS = (G0, R) 

An evolution process of an AspectJ 
source code, where: G0 is the 

starting graph; and R is a set of 
evolution operations (graph 

rewriting rules). 

In the following, we present an evolution scenario for the 
graph in Figure 5 using the attributed graph grammar 
(AGG) tool (Schultzke and Ermel, 2012). We will change 
the program UpdateDisplay (Figure 1) to meet the 
following evolution requests: 

a Do not display a message before the call of the methods 
setX and setY ⇒ delete the advice before () move. 

b Control the value of x ‘if x > 10 x = x-1’ ⇒ add a new 
pointcut ‘control’ to capture the method setX: 

pointcut control(): 

call (void Point.setX(int)); 

int around (int x): control(){ 

if (x>10) x=x-1; 

return x; 

} 

c Change the name of the aspect UpdateDisplay to 
DisplayAndControl ⇒ modify the attribute Name of 
the aspect. 

The rewriting rules for these requests are the following: 

a Deletion rule: Figure 6 depicts the deletion rule. It 
deletes the advice executed before the pointcut move. 
The deletion of an entity involves the deletion of all 
their related dependencies (the edges between the 
advice before and the pointcut move and the aspect 
UpdateDisplay are deleted too). 

 

Figure 5 The coloured graph of the program UpdateDisplay (see online version for colours) 
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Figure 6 Delete the advice before move (see online version for colours) 

 

Figure 7 Add the pointcut control (see online version for colours) 

 

Figure 8 Graph after evolution (see online version for colours) 

 

 
b Addition rule: The rule in Figure 7 adds the pointcut 

control detailed above, to the aspect UpdateDisplay ‘if 
it is not already existed’. This condition is formulated 
using the NACs depicted in the left side of the figure 

(i.e., the existence of two advices with the same kind 
for the same pointcut is prohibited). The RHS of the 
rule depicts that the addition of the pointcut involves 
the addition of its advice (advice around and its return 
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value). The join points are specified with the crosscut 
edges. The attribute type of the crosscut edge specifies 
that the join point is of the type method call. 

c Modification rule: The modification rule is depicted  
in the top of Figure 8. This rule substitutes the old 
attribute Name of the aspect by the new one. The NAC 
is used here to avoid the existence of other aspect with 
the same name. We can note here that the modification 
request is formulated as the deletion of the old element 
(node or edge) and the addition of the new one. 

After the application of these rules, the screenshot in  
Figure 8 shows the graph represents the program 
UpdateDisplay after transformation (evolution). 

6 Tool validation 

6.1 Tool overview 

Our approach aims to reverse-engineer the AspectJ source 
code to a more abstract representation as an attributed 
coloured graph. The change requests are described as 
rewriting rules. These last are applied to the AspectJ graph 
via a graph transformation tool. So, the main problem in the 
validation of our proposal is the conversion of the AspectJ 
source code to a coloured graph representation. We have 
full automated this conversion. Figure 9 presents the 
overview of our tool validation, which can be resumed in 
the following parts: 

• Convertor tool: to represent the AspectJ source code as 
an attributed coloured graph, we have implemented a 
convertor tool. This last can be divided in three main 
subconvertors. 
1 AspectJML: This is an existing open source 

proposed by Melo Junior and Mendonça (2005).  
It is an extended markup language (XML)-based 
markup language for representing source code 
written in AspectJ. The AspectJ source code is 
converted in XML format (Suzuki and Yamamoto, 
1998) through the power of AspectJML. 

2 XML-to-GXL convertor: We have implemented 
this convertor. It converts the XML document 
produced by AspectJML to a graph exchange 
language (GXL) (Winter et al., 2001) modelling 
the AspectJ source code as a coloured graph.  
This convertor is an XML stylesheet language 
transformation (XSLT) document (Clark, 1999); 
where every AspectJ element is treated via a 
specific XSLT template. The XML-based 
representation (GXL) provides the 
interchangeability of AspectJ model information 
between various development tools such as CASE 
tools. This seamless tool interoperability increases 
our productivity to evolve an AspectJ source code. 

3 GXL-to-GGX convertor: We have implemented 
this convertor to convert the GXL document 
produced by the XML-to-GXL convertor to a 
graph grammar exchange (GGX). This last is the 
XML-based format used in the AGG (Schultzke 
and Ermel, 2012) tool to represent the host  
graph. This format is a GXL graph extended with 
layouts for nodes and edges. This convertor is an 
XSLT document too. It is based on the graph 
transformation environment used for the 
transformations. So, if we want to use another 
environment else than AGG, we just need to 
modify the convertor to generate the appropriate 
graph format of this environment (starting from the 
GXL graph). 

• AGG tool: The change requests must be formalised as 
rewriting rules. Then, we use a graph transformation 
environment to apply these rules on the attributed 
coloured graph. In our validation, we used the AGG 
tool (Schultzke and Ermel, 2012), which is a powerful 
tool of graph transformation. We can formulate 
properties, constraints; analyse the graph, …, etc. The 
transformation of the AspectJ graph produces a new 
version of this one, where all the change requests are 
applied as rewriting rules. 

Note: After the modification of the graph (evolution), we 
can regenerate the AspectJ source code following the 
inverse path: convert the GGX graph to GXL (via XSLT). 
This last must be converted in XML via XSLT, then in 
AspectJ via AspectJML. The use of XSLT is very 
interesting for our proposal. The processing of an XSLT 
stylesheet is very speed; we can generate the GXL (or 
GGX) document of a large application in an average of less 
than 10 seconds. So, our validation strategy is very efficient 
for smaller as well as large AspectJ source code. 

Figure 9 Tool validation (see online version for colours) 
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6.2 Experimentation 

In order to assess the feasibility and correctness of our 
approach, some AspectJ programs were analysed and 
represented by the proposed graph-representation using our 
prototype tool. Our study used six AspectJ programs as 
shown in Table 6. Five of them are taken from AspectJ 
example package. The rationale behind was, this collection 
of programs has also been used as benchmarks by a lot of 
researches as case studies. Our experimentation also 
includes a benchmark used in many research works 
‘ProdLine’. 

These benchmarks give us a variety of situations to 
validate our prototype tool. For example, the Benchmark 
Telecom contains ten classes and 39 methods; ProdLine 
contains 11 aspects and 84 introductions, 15 pointcuts, and 
so on. The applicability of our approach to these case 
studies shows its feasibility to represent and validate AO 
software evolution. We verified the coloured graphs (GXL 
documents) generated by our tool against a manual 
inspection of the graph and the associated analysed source 
code for each of aforementioned programs. 

Our experiments showed that the coloured graphs 
generated by the tool were correct for smaller benchmarks 
(e.g., Tjp) as well as the large ones (e.g., ProdLine). 

The execution time needed for the generation of graphs 
is dependent with the size of the AspectJ source code as 
well as the number of their modules. The graph in Figure 10 
shows the execution time (in millisecond) for the generation 
of GXL graphs for every previous Benchmark. So, our 
representation of AO software provides a useful support for 
gaining a better knowledge of the internal structure of these 
complicated programs, by reducing the effort needed for 
obtaining them in a variety of software engineering tasks, 
and especially in AO software evolution. 

Figure 10 Execution time in millisecond (see online version  
for colours) 

 

So, we can use our prototype as a reverse-engineering tool 
of AspectJ source code. 

7 Related work 

This section of the paper presents related works discussing 
the benefits of our proposal in contrast to the other ones. 
Our work involves the following research areas: 

 

• Graph-based modelling for AO software: A variety of 
graph-based models have been proposed to represent 
the different features of the AO programs (Bernardi  
and Di Lucca, 2007; Lemos et al., 2007; Parizi and 
Abdul Ghani, 2008; Zhao, 2003). Each of these models 
puts the accent on some of the specific features of a 
program for slicing or testing purposes, not for 
evolution propose. Most of them are fine-grained 
representations, which represent a program at the 
‘statements’ level, i.e., nodes represent statements and 
arcs represent the different dependencies between them. 
However, the tendency in the evolution techniques is to 
use coarse-grained representations, that put in evidence 
the different components of the artefact (e.g., aspects, 
advices, methods) and the dependencies between them 
(e.g., membership, crosscutting). Our approach follows 
this principle to model the AO software evolution. 

• Aspect-oriented software evolution: It is still an 
emerging research area; this is largely due to the fact 
that few large-scale AO software systems exist today. 
This is why evolution models for AO software systems 
do not exist yet, hence, our proposal. However, many 
techniques (Chavez et al., 2009; Griswold et al., 2006; 
Kellens et al., 2006; Pires et al., 2011) exist to treat the 
fragile pointcut problem. For instance, Kellens et al 
(2006) propose a model-based pointcuts. They 
decouple the pointcut definitions from the actual 
structure of the base program, and define them in terms 
of a conceptual model of the software instead. We 
believe that our abstract representation of the AspectJ 
source code offered by our approach can be used 
complementary with these techniques to alleviate this 
problem. 

Table 6 Analysed programs 

Program #Classes #Aspects #Method 

Telecom 10 3 39 
Bean 2 1 16 
Observer 6 2 9 
Tjp 1 1 5 
Introduction 1 3 13 
ProdLine 9 11 10 

Program #Pointcut #Advice #Introduction 

Telecom 6 6 3 
Bean 1 2 1 
Observer 1 1 11 
Tjp 2 1 - 
Introduction - - 6 
ProdLine 15 15 84 

Our model makes more visible and clear the dependencies 
between the crosscutting concerns of the system as well as 
all the dependencies between the aspects and the base code, 
i.e., if we change any join point, we can detect the 
crosscutting concerns (aspects) or more specifically the 
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pointcut(s) related to this join point. Using one of the 
previous techniques, we can verify that the pointcuts are 
well implemented in our model, and consequently, in the 
AO source code. 

8 Conclusions 

We proposed in this paper an evolution model for AO 
source code written in AspectJ. It is based on the algebraic 
graph rewriting formalism which gives it a formal 
background and an automatic implementation method 
(employing graph rewrite tools). Our approach starts by 
reverse engineering the source code to a coloured graph; 
representing the different entities of the system and their 
dependencies. The evolution requests are formalised using 
rewriting rules on the system graph. We can combine 
several rules to achieve different evolution requests of an 
AO software system. A prototype tool is built and case 
studies are experimented to demonstrate the feasibility of 
our approach. Although this is not the scope of this paper, 
we believe that this approach is general enough to be 
applicable to other AO programming languages, i.e., even if 
AO languages may require specific kinds of nodes and 
edges, they can be all expressed using the same notation as 
an attributed coloured graph. 
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