Int. J. Computer Applications in Technology, Vol. X, No. Y, 200x 1

Rewriting rule-based model for aspect-oriented
software evolution

Hanene Cherait* and Nora Bounour

LISCO Laboratory,

BadjiMokhtar — Annaba University,
P.O. Box 12, 23000 Annaba, Algeria
Email: hanene_cherait@yahoo.fr
Email: nora_bounour@yahoo.fr
*Corresponding author

Abstract: Software is evolutionary in nature. From the time a software product is defined until it
is no longer used, it changes. We focus in this paper on the aspect-oriented (AO) software
evolution. Although AO software engineering is the subject of ongoing research, AO software
evolution has received less attention. AO programming is a mature technology that modularises
the crosscutting concerns. Unfortunately, it produces new dependencies between them; restricts
the evolvability of the software system. In order to cope with all types of AO program’s
dependencies, we converge toward a new evolution modelling approach. In our proposal, the AO
source code is modelled in a more abstract and formal format as an attributed coloured graph,
where the different dependencies in the software system are well defined. Then, the change
requests are presented as rewriting rules on this coloured graph. We give here, the details of our
approach as well as its implementation. And, we provide an empirical evaluation to prove the
efficiency of our proposal.

Keywords: aspect-oriented programming; AOP; software evolution; reverse-engineering; graph
rewriting, source code modelling

Reference to this paper should be made as follows: Cherait, H. and Bounour, N. (xxxx)
‘Rewriting rule-based model for aspect-oriented software evolution’, Int. J. Computer
Applications in Technology, Vol. X, No. Y, pp.XXX—XXX.

Biographical notes: Hanene Cherait is a PhD student in Complex Software Engineering. She
received her Master of Science degree in Computer Science from the University of Badji
Mokhtar — Annaba (UBMA), Algeria in 2009. Her research interests include software evolution;
aspect-oriented programming and software reverse engineering.

Nora Bounour received her Doctorate degree in the Department of Computer Science at the
University of Badji Mokhtar — Annaba (UBMA), Algeria in the year 2007. She is presently
working in the same department as an Associate Professor. She is the Head of the research group
on reengineering and evolution of complex systems at the Laboratory of Complex System
Engineering (LISCO). Her research interests include software evolution and reverse engineering
methodologies, separation of concerns and aspect-oriented programming.

1 Introduction Although there are a large number of evolution
techniques for the different programming paradigms
(procedural software, object-oriented software, ..., etc.),
seldom effort has been spent for aspect-oriented (AO)
software evolution. To overcome this problem is a hot topic.
Aspect-oriented programming (AOP) (Kiczales et al., 1997)
is a technique for modularising crosscutting concerns.
Aspect] (The Aspect] Team, 2012) is the most popular AO
language. It constitutes an extension of Java. The Aspect]
program can be divided into two parts: base code which
includes classes, interfaces and other language constructs as
in Java, and aspect code which includes aspects for
modelling crosscutting concerns in the program. Each
aspect which is woven at a specific set of join points is
solely responsible for a particular crosscutting concern
(Kiczales et al., 1997).

Software evolution refers generally to progressive change in
the software’s properties or characteristics (Lehman and
Belady, 1985). Managing software change is the key
process in software evolution. This process of change in one
or more of their attributes leads to the emergence of new
properties or to improvement, in some sense (Lehman and
Ramil, 2007). Therefore, software evolution should not be
treated by an ad hoc or unstructured process (Lehman and
Belady, 1985). This is why, a lot of techniques and more
specifically models have been proposed to manage the
software evolution in a reliable and organised way along its
life cycle. The research efforts spent in the software
evolution topic show the importance of the domain (Pan
et al., 2013; Hammad et al., 2014).

Copyright © 20XX Inderscience Enterprises Ltd.

2 H. Cherait and N. Bounour

In spite of the more advanced modularisation
mechanisms (Suganthi and Nadarajan, 2013), AO programs
still suffer from evolution problems. According to the study
of Tourwé et al. (2003), “current aspect oriented software
design (AOSD) technologies deliver applications that are as
hard, or perhaps even harder, to evolve than was the case
before...”. One observed characteristic of AOP is that it
results in a large number of additional (coarse-grained to
fine-grained) system units (aspects) ready to be composed
to the final application. With this growing number of system
units, the dependencies between them become vast and
tangling (crosscutting relationships are difficult to depict
cleanly and effectively). Aspects are not explicitly invoked
but instead, are implicitly invoked (Xu et al., 2004). So,
changes introduced with AOP are not visible directly in the
base system’s source code, making program comprehension
more difficult. Aspects are usually stored in separate files;
but the effects of this code can influence the whole system
(Vollmann, 2002). To resume up, modelling AO program
evolution involves more complex relationships than in the
traditional ones (object-oriented, procedural...).

The aim of our paper is to propose and illustrate an
efficient evolution model for AO software, and specifically,
for the Aspect] source code. The main contributions of this
paper are summarised as follows:

e Modelling the AO source code: In our proposal, the AO
(Aspect]) source code is modelled as a coloured graph
(Heckel et al., 2002). Our model represents an AO
system at an abstraction level of the system components
and the different relations between them.

e Change modelling: Define rules to model changes to
the AO system. Describing what kind of changes can be
made on the model. These changes are formalised as
rewriting rules (Ehrig et al., 2006) on the coloured
graph.

e A prototype tool that automates the reverse-engineering
of the Aspect] source code to a coloured graph.

The rest of the paper is organised as follows. In the next
section, we give the background used in this paper.
Section 3 presents the overview of our approach. Section 4
gives the model (coloured graph) representing the AO
source code. In Section 5, we explain how change requests
can be formulated as rewriting rules. Section 6 details our
tool validation as well as our experimentations. We pass
briefly on the related work in Section 7. Finally, we
conclude our discussion and present the future work in
Section 8.

2 Background

Before we detail our evolution model for AO software,
some basic background has to be presented. This section

provides the basic concepts of an AO source code and more
specifically Aspect] programming language, and then we
pass briefly on the foundations of the algebraic graph
rewriting formalism.

2.1 Foundations of the AspectJ language

In this paper, we use Aspect] as our target language to show
the basic idea of our evolution model for AO software. The
choice of Aspect] is motivated by its wide popularity,
mature language design, industrial-strength tool support and
by its nature as an extension of Java. Before presenting our
approach, we first briefly introduce the background of
Aspect] semantics. More information about Aspect] can be
found in The Aspect] Team (2012).

The decomposition of an Aspect] application makes
appear:

o The base code that defines the set of the services (i.e.,
functionalities) achieved by the application. In other
words, the code corresponds to the ‘what’ of the
application.

e Several complementary aspects that specify the
mechanisms governing the execution of the application,
i.e., the non-functional aspects defining the “how’
(synchronisation, persistence or security). The aspects
are used to regroup choices of implementation that have
an impact on the whole system and that would be
scattered otherwise through the whole code.

To illustrate the fundamental concepts of Aspect] language,
we refer to the example in Figure 1. This program changes
the monitor to refresh the display as needed. It contains an
aspect UpdateDisplay that updates the display when objects
move, and a class Point.

Figure 1 The program UpdateDisplay (see online version
for colours)

UpdateDisplay{

1y Point.name ;
d Point.setName
name) {

= name;

oo

nt)) ||
Point.set¥({int});
: move() |{
em.cut.println{"figure
is going to be displaced");

after(): move (){
Display.update(] ;

Rewriting rule-based model for aspect-oriented software evolution 3

Table 1 Kinds of join points
Join point Pointcut designator Description
Method call call(MethodPattern) When a method is called

Method execution
Constructor call
Constructor execution
Static initialiser execution
Object pre-initialisation
Object initialisation

Field reference

Field set

Handler execution

get(FieldPattern)
set(FieldPattern)
handler(TypePattern)

Advice execution adviceexecution()

execution(MethodPattern)
call(ConstructorPattern)
execution(ConstructorPattern)

staticinitialisation(TypePattern)
preinitialisation(ConstructorPattern)
initialisation(ConstructorPattern)

When the method’s body is executed
When a constructor is called
When a constructor’ s body is executed
When the static initialisation of a class is executed
Before the initialisation of the object
When the initialisation of an object is executed
When a non-constant attribute of a class is referenced
When an attribute of a class is modified
When a treatment of an exception is executed
When the code of an advice is executed

Aspect] provides new features for modularisation, in
particular when adding new functionality to an existing
system.

The novel features can be classified into two groups,
one influence the dynamic behaviour of the base code by
injecting new code when certain events occur in its
execution: join point, pointcut, and advice. The second
group of features allows one to statically add new members
to classes: introduction. So, Aspect] extended Java through
additional keywords to support AOP concepts:

e Join points: they are the places where the crosscutting
actions take place. They represent well-defined points
in the execution of a program, such as method calls,
object field accesses and so on. The purpose of the
Aspect] language is allowing the programmer to
precisely and succinctly identify and manipulate
join-points. Table 1 describes the kinds of join points,
for every join point a specific pointcut designator is
used.

e Pointcut: after we identify the join points useful for a
crosscutting functionality, we need to select them
using the pointcut construct. A pointcut is a Boolean
expression over a fixed set of predicates and the
operators; and (&&), or (||) and not (!). It selects join
points based on a given criteria, such as method names
and so on (Table 1), and collects context at those
points. Pointcuts serve to define which advice has
to be applied.

e Advice: an advice represents a program module
which is to be executed at the designated join points.
There are three types of advices before, after (after
returning/after throwing) and around, which
correspond to the program modules to be executed
prior, after or instead of the designated events,
respectively. The body of an advice is much like a
method body — it encapsulates the logic to be executed
upon reaching a join point. In contrast to the methods
of traditional object-oriented languages, advices are not
called explicitly. Instead, the execution of an advice is
automatically ‘triggered’” when the control flow reaches
the join point that is designated (Vollmann, 2002).

e Introduction (inter-type declaration): introductions
are used to crosscut the static type structure of classes.
That is, they insert additional class members like
constructors, methods, and fields into classes as
if they were declared in the classes themselves.

They may even change the class’s super-class and its
super-interface, respectively.

e Aspect: it is the central unit in Aspect], in the same way
that a class is the central unit in Java. It contains the
code that expresses the weaving rules for both dynamic
and static crosscutting. Additionally, aspects can
contain data, methods, and nested class members, just
like a normal Java class. Every aspect is destined to be
developed in an independent way then integrated to an
application by a process called ‘aspect weaving’.

If we compare the above concepts with the program
in Figure 1, we distinguish: one aspect named
‘UpdateDisplay’. This last contains a pointcut declared with
the name ‘move’. Which specifies two join points of the
type Method call; ‘when the method setX is called’, and
‘when the method setY is called’ (class Point’s methods).

The two are joined with the operator ‘or (||)’. And two
advices (before, after). Besides, it contains three
introductions: it introduces an attribute ‘name’ and two
methods ‘setName’, ‘getName’ to the class ‘point’.

2.2 Algebraic graph rewriting

The main idea of the algebraic approach to graph rewriting
(Ehrig et al., 2006) is to give an abstract algebraic
characterisation of attributed coloured graphs (Heckel et al.,
2002). A coloured graph can be formalised as follows:

e Coloured graph: Formally, a coloured graph,
for example, G, is represented by a 6-tuple as:
G = {Ng; Ag; Sg; te; m;; my}. Here, Ng denotes the set
of nodes, AG denotes the set of edges; S is a mapping
that maps the edges to their sources and tg maps them
to their targets. m; and m, are mappings that map the
nodes and the edges in the graph to the fixed alphabets
of node and edge colours, respectively. The colours are
very important to give a semantic description of the

4 H. Cherait and N. Bounour

element (node, edge). Without names (colours) it would
be hard to identify the elements and their
interrelationships.

e Graph rewriting: The calculus of graph transformation
(graph rewriting) has a solid background. In this paper
we present only as much theoretical background as
needed to understand our approach. From Figure 2
(Blomer et al., 2012), a graph rewrite rule consists of a
tuple L — R, whereas L the left hand side (LHS) of the
rule is called pattern graph and R the right hand side
(RHS) of the rule is the replacement graph. Moreover,
we need to identify graph elements (nodes or edges) of
L and R for preserving them during rewrite. This is
done by a preservation morphism r mapping elements
from L to R; the morphism r is injective, but needs to
be neither subjective nor total (Blomer et al., 2012).

The transformation is done by the application of a rule to a
host graph H. To do so, we have to find an occurrence of the
pattern graph in the host graph. Mathematically speaking,
such a match m is an isomorphism from L to a sub graph of
H. This morphism may not be unique, i.e., there may be
several matches.

Figure 2 Basic idea of graph rewriting

Pattern Graph Rewrite Graph

Preservation Morphism »
L > R
Rule

L}
Match m | :

\vl
]

Result Graph

st

v
/[

Host Graph

Rule Application

A

Afterwards we change the matched spot m (L) of the host
graph, such that it becomes an isomorphic sub graph of the
replacement graph R. Elements of L not mapped by r are
deleted from m (L) during rewrite. Elements of R not in the
image of r are inserted into H; all others (elements that are
mapped by r) are retained. The outcome of these steps is the
resulting graph H’. The rewrite rules can be specified with a
textual (Blomer et al., 2012; Glauert et al., 1997) or
graphical (Schultzke and Ermel, 2012) manner.

Potentially, additional constraints as to when a rule
should or should not be applicable may be specified as
attribute conditions (ACs), or negative application
conditions (NACs). A NAC is a graph pattern which must
not be present in the host graph for the rule to be deemed
applicable. ACs are Boolean expressions which may appear
in order to express constraints on attribute values. The
labels prefixing the nodes and edges must be used for
identification purposes, meaning a node (or edge) bearing
the same label in LHS and RHS (and possibly NAC) refers
to the same node (or edge) in the host graph (e.g., Figure 7).

A set of graph rewriting rules, together with a
type graph (Corradini et al., 1996), is called a graph
transformation system (GTS). One of the main static
analysis facilities for GTSs is the check for conflicts and

dependencies between rules and transformations. We argue
that the existing theoretical results for graph transformation
can advantageously be used for analysing potential conflicts
and dependencies in AO software evolution.

3 Overview of our approach

In this section of the paper, we present the overview of our
proposed evolution model for Aspect] source code. AO
software evolution can be defined as the process of
progressively modifying the elements of an AO software
system in order to improve or maintain its quality over time.
The main idea of our proposal is to accurately model how
this software evolves by using a more abstract and formal
format.

We use graph transformation (graph rewriting) (Ehrig
et al., 2006) as a formal technique to give a formal
semantics to our evolution model and to analyse it
rigorously. The analogy between AO software evolution
and graph transformation is quite natural: an AO software
system can be expressed as a graph containing a
set of components interrelated by connectors. Graph
transformations allow us to express the evolution of these
software graphs in a precise way. In addition, it enables
formal analysis and reasoning about AO software evolution.
Mehner et al. (2009) state that “The formal technique helps
to make the problems explicit. It directs the developer to the
problematic parts of a model. It helps in understanding
aspect-oriented compositions and it helps in reasoning
effectively about the crosscutting”.

Figure 3 Overview of our approach (see online version
for colours)

L

Software maintainer

]

'
'
]
'
'
'
'
~ !
Change H
- ' | Rewriting
modelling H rales)))
' Graph transformation environment
'
'
. -
'
Program]
modelling [Attributed

coloured graph of
the Aspect]
source code

1

Graph
after
evolution

(b)

Aspect]
solrce
code

(a)

t

Figure 3 depicts the overview of our approach, which can be
divided in two main steps:

1 as presented in Figure 3(a), the Aspect] source code is
represented as an attributed coloured graph (Heckel
et al., 2002), and the changes to the software are
formalised as rewriting rules that transform the graph G
to a graph G’; in order to achieve the evolution requests

Rewriting rule-based model for aspect-oriented software evolution 5

2 the software maintainer modifies the coloured graph of
the AspectJ source code by applying sequences of
rewrite rules in a certain order [Figure 3(b)].

The changes are presented in a formal format as rewriting
rules. In contrast to the text format of the change, the
rewrite rule is more accurate and meaningful, because it
contains the full information about the change:

1 Where it is applied: the pre-condition of the rule gives
the parts of the graph that will be subject to change, i.e.,
the changed elements and their related entities.

2 How it is applied: the post-condition of the rule shows
the altered parts of the graph after application of he
rule.

3 When it is applied: the different conditions that we can
formulate for the applicability of the rule (NAC, AC,
..., etc.). If one of the conditions is not verified, the rule
(change) will not be applied.

This rich format facilitates the comprehension of the change
(where, how and when), and thereafter the software
evolution.

The obvious first step towards our goal for representing
AO software evolution by graph rewriting is the
introduction of a suitable graph representation of Aspect]
programs: one needs to decide which entities are
represented by nodes, which relationships are represented
by edges, and which information is represented by
properties of nodes and edges. This is discussed in the next
section.

4 Program modelling

At the first step our model aims to define an abstract
representation of the Aspect] source code. In contrast to the
text representation of the source code, the abstraction gives
a more comprehensible and global overview of all software
artefacts and their relationships eliminating the fine-grained
details. This facilitates the evolution tasks: change impact
analysis, change propagation, ..., etc.

In our approach, the Aspect] source code is modelled by
an attributed coloured graph (Heckel et al., 2002). This last
is generated directly from the Aspect] source code. We feel
that for our purpose, the graph-based approach is very
suitable. In view of the wide acceptance of graph-like
representations in modelling software, it seems natural and
interesting to use graph rewriting as the basis for the desired
evolution model.

Graphs are based on a well understood mathematical
foundation ‘graph theory’ (Godsil and Royle, 2001). This
makes them very interesting from a formal point of view.
From a practical point of view, graphs are also very
useful, since they are used often as an underlying
representation of arbitrarily complex software artefacts and
their interrelationships (Mens, 2001).

In order to formally specify the Aspect] source code as a
coloured graph, we should have to present the meta-model
of the proposed ‘coloured graph’. This meta-model
guarantee the consistency of the model (graph) to every
transformation, which specifies what it means for a model
to be valid (well formed). We use therefore; a type graph
(Corradini et al., 1996) that plays the role of a meta-model.
This type graph (class diagram), shown in Figure 4,
specifies how to create well-formed coloured graph of
Aspect] software. Any well-formed Aspect] source code
can be represented as a graph that conforms to this type
graph.

We can detect that this type graph is the union of two
parts: the base code sub-graph and the aspect(s)
subgraph(s). These two parts are related with different
dependence edges. In the following, we give the details of
the different elements of the Aspect] type graph
(meta-model).

4.1 The base code sub-graph

The base code of the Aspect] source code is an object
oriented program. This last consists of source code entities
and their dependencies. In our representation, the nodes
represent the entities of the program and the edges are theirs
dependencies. As discussed before (Section 2.2), an
attributed coloured graph has a pair of colour alphabets, one
to colour the edges and one to colour the nodes. The
elements of the node colour alphabet for the base code are
the following:

o Class: «Namey, «Visibility» (is one of: abstract,
private, protected or public).

e Attribute: « Namey, «Visibility», « Type»
e Method: «Name», «Visibility»

e Parameter: «Namey, « Type»

e Returnvalue: « Type».

Furthermore, the edges describe the relationships
(dependencies) between these entities as presented in
Table 2. The relationships can be classified into three
classes:

e The first class of relationships depicts which attributes
and methods belong to a class. It is also important for
this model to show the parameters and the return values
that methods take or return.

e The second class of relationships shows the connection
between classes. Here, relationship is one of
association, aggregation, generalisation, or
composition.

e The third class of relationships captures the object
relations (calls). This type of relationship is important
to include in our model because they specify which
methods and parameters are affected by the changes
caused by evolution requests.

6 H. Cherait and N. Bounour

Figure 4 Type graph of the Aspect] model (see online version
for colours)

Relationship [| -
String Type L’L J : :it:i[:;utlzame
1:::::!' \h.lr-m?- T———____——string Visibility
[String Visibility| - N
17 B L Sln:g Type

Intoduced-to

Cﬂﬂtﬂiﬂ+ Intoduced-to Introduces-Ah‘ribute\

1
Calls \ Introduction ™ \
i ¥k 1 <

Introduces-Method

*Method “las ontains \Comains

|Return-Value " \‘Relurns

string Type |1 7|String Name \
Ao.1 String Visibility| Relationship /
1 . tains String Type 1 ,/'1
| /
Takes-Parameter % Aspect
lo.x o
= Crosscuts String Name
calls,” lE'EI?!!‘JF!?!,, String Type String Visibility|
Returns String Name |1
0 ,[String Type 0. Contains
" Takes-Parameter
Take§-Parameter V |Pointcut —
1 - __ypString Name
NI ALY [ACYRS rstrlng VlsibilityJ Contains
Advice 55 e —
String Pointcut <
String Kind
Table 2 Edge colours of the base code sub-graph
Source node Target node Edge colour Attribute
Class Attribute Contains -
Method Contains -
Class Relationship Type
Parameter Method Takes-parameter -
Method Return value Returns -
Method Calls -

4.2 The aspect sub-graph

An aspect is an encapsulation unit. It consists also of entities
and dependencies. Every aspect of the system is also
modelled with a coloured sub-graph. This last is similar to
the sub-graph that models the base code program, but we
must add other concepts proper to the Aspect] source code.
The elements of the node colour alphabet are:

e Aspect: «Namey, «Visibility»

e Attribute : « Name», «Visibility», « Type»
e Method: «Namey, «Visibility»

e Parameter: «Namey, « Type»

e Return value: « Type »

e Pointcut: «Namey, «Visibility»

e Advice: « Pointcut», « Kind» (is one of: before/after
returning/after throwing/after/around)

e Introduction.

Table 3 groups the different dependencies in the aspect
sub-graph. For every edge, we define its source/target node,
as well as the colour used and the attribute(s) needed.

4.3 Modelling the global system

In order to model the entire Aspect] source code, we must
give a global overview of the different entities of the
program and theirs dependencies.

Table 3 Edge colours of the aspect sub-graph
Source node Target node Edge colour Attribute
Aspect Attribute Contains -
Method Contains -
Pointcut Contains -
Advice Contains -
Introduction Contains -
Aspect Relationship Type
Method Method Calls -
Return value Returns -
Parameter Method Takes-parameter -
Pointcut Takes-parameter -
Advice Takes-parameter -
Pointcut Advices -
Advice Advice around Returns -
— Return value
Method Calls -
Introduction Attribute Introduces-attribute -
Method Introduces-method -

To integrate the different sub-graphs that represent the
classes and the aspects, we need three types of edges,
Table 4 describes these edges:

e Crosscuts: this type of edges links the pointcut of the
aspect with its join point(s). They must show the
information about the join point type: method
call/method execution... (Table 1).

e Introduced-to: this type of edges links the methods or
attributes introduced by the aspect with the class(s)
where they are introduced to.

e Calls: these edges present the calls between aspect’s
methods/advices to the base code methods, i.e., a
method (advice) of an aspect can use the methods of a
class to perform a specific treatment. Besides of the
constraints between nodes and edges presented above,
the type graph (Figure 4) expresses the following
constraints on the instance graphs:

1 Constraints of multiplicity on the edges: For
example, every pointcut or advice is contained in
precisely only one aspect. A class contains zero or
several attributes and methods, the method has one
return value and the return value is related to one
method, ..., etc.

Rewriting rule-based model for aspect-oriented software evolution 7

2 Constraints of multiplicity on the nodes: In the type
graph considered, we did not define constraints of
multiplicity on the nodes. However, we could have
decided to permit the graphs that contain at least a
node of type aspect (while attaching the cardinality
of 1..* to the aspect), and so on.

3 Constraints of attributes: The specificities of the
components of the program, as the types are
represented mainly on the edges and the nodes by
attributes that are mainly string of characters.

An Aspect] source code can now be specified formally as a
graph conforming to the type graph, together with all of its
graph constraints. An example is given in Figure 5. It shows
a graph representing the Aspect] program ‘UpdateDisplay’
of Figure 1 (this graph has been generated by our convertor
tools, see Section 6). In this figure, we can see that there are
three sub-graphs: in the LHS of the figure, we depict the
coloured graph of the class point, and in the RHS the
coloured graph of the aspect UpdateDisplay. The two
sub-graphs are related with five dependence edges: two of
the type crosscut and three of the type introduced-to. At the
bottom of the figure, we depict the sub-graph of the class
‘display’, its method update is called by the advice after
move (call edge).

Table 4 Dependence edges
Edge colour Source node Targetnode Attribute
Calls Aspect’s method Class’s -
method
Advice Class’s -
method
Crosscuts Pointcut Class’s Type
method
Introduced-to Method, attribute Class -
introduced by the
aspect

4.4 Discussion

The representation of the Aspect] source code as a unique
graph does not avoid the modularity of the code. It is very
important to preserve the separation of crosscutting
concerns when modelling the AO program, the primary
motivation behind AOP. Our proposal maintains strict
separation of base-code and crosscutting concerns in the
proposed source-code model, i.e., every concern (aspect) is
modelled as a coloured graph. The weaving is presented as
dependence arcs between the base code sub-graphs and
aspect sub-graphs. So, it is very easy to distinguish between
the base code and the crosscutting concerns (aspects) of the
software. In summary, the proposed evolution model for
Aspect] source code preserves the modularity of the
aspect-oriented paradigm, at the same time it makes more
visible and clear the dependencies between the crosscutting
concerns of the system, which is note an easy task with the
plain text representation of the Aspect] source code.

5 Change modelling

The aim of our work is not just to formalise the evolution
operations but to automate their application too. While
Aspect] source code is graphically formalised by coloured
graph, evolution requests (changes) are mapped to graph
rewriting rules. A rewrite rule changes graphically
(automatically) the sets of entities and dependencies of a
program to evolve it; where the entities are considered as
nodes and the dependencies are the edges between the
program entities. Like graphs, graph rewriting is very
intuitive in use. Nevertheless, it has a firm theoretical basis.
These theoretical foundations of graph rewriting can assist
in proving correctness and convergence properties of the
AO software evolution. We represent changes to the
program as explicit rewriting rules to its coloured graph.
When a change rewrite rule is applied it takes as input a
program state and returns an altered program state.
We have two types of change operations:

1 Atomic change operations: The basic evolution
operations (changes) that will serve as foundations to
the creation of more complex operations. The main
atomic change operations are the addition and the
deletion operations, since we believe that change
operation can be modelled by deleting the old entity
(or dependency) and adding the new one.

Consequently, the atomic rewriting rules are:

e addition rule: add a new node (edge) to the
program graph

e deletion rule: deletes an existing node and all its
dependencies, or the deletion of just an edge.

2 Composite change operations: the atomic change
operations can be combined to realise various evolution
requests. The combination of several basic operations
will be able to give birth to other evolution operations,
or to an evolution process. For example, an evolution
request that requires moving a pointcut from aspect A
to aspect B consists in deleting it from A and adding it
to B. Besides, we have to move the advice(s) related
with this pointcut to aspect B also, or we just delete it
(them) according to the change request. These atomic
changes can be grouped in a single ‘move pointcut
change’. This is practically performed via the rule
sequence concept. This last is the union of all the rules
formulated for a specific evolution request, applied in a
certain order just like an algorithm.

Starting from the definitions in the Section 2.2, we can
give a precise and clear meaning for the graph rewriting
system concepts that describe our AspectJ evolution
model.

Table 5 gives the mapping of graph transformation concepts
to the Aspect] software evolution.

8 H. Cherait and N. Bounour

Table 5

Aspect] software evolution as a GTS

Graph transformation
concepts

AspectJ evolution concepts

Host graph

Rewriting rule

Left hand side (LHS) of

the rule

Right hand side (RHS)

of the rule

LHSNRHS

LHS\ (LHSNRHS)

RHS\ (LHSNRHS)

Sequence rule

Graph transformation
system GTS = (Gy, R)

Aspect] coloured graph.

The evolution operation that
presents the change, which must be
done on the software.

The sub-graph related to the change
request, i.e., the entity (s) related to
the change and their relationships.

The sub-graph that presents the
LHS after evolution. Modify the
LHS in order to meet the change

request.

The graph part that must be
unchanged, which is not touched by
the evolution request.

The graph part which shall be
deleted. Represent the elements
touched by the evolution request.

The graph part which shall be
created. The changed elements after
evolution.

The union of all the rules
formulated for a specific evolution
request, applied in a certain order.

An evolution process of an Aspect]
source code, where: G is the
starting graph; and R is a set of
evolution operations (graph
rewriting rules).

In the following, we present an evolution scenario for the
graph in Figure 5 using the attributed graph grammar
(AGG) tool (Schultzke and Ermel, 2012). We will change
the program UpdateDisplay (Figure 1) to meet the
following evolution requests:

a Do not display a message before the call of the methods
setX and setY = delete the advice before () move.

b Control the value of x ‘if x> 10 x =x-1" = add a new
pointcut ‘control’ to capture the method setX:

pointcut control():
call (void Point.setX(int));
int around (int x): control(){
if (x>10) x=x-1;
return x;
}

¢ Change the name of the aspect UpdateDisplay to
DisplayAndControl = modify the attribute Name of
the aspect.

The rewriting rules for these requests are the following:

a Deletion rule: Figure 6 depicts the deletion rule. It
deletes the advice executed before the pointcut move.
The deletion of an entity involves the deletion of all
their related dependencies (the edges between the
advice before and the pointcut move and the aspect
UpdateDisplay are deleted too).

Figure 5 The coloured graph of the program UpdateDisplay (see online version for colours)

Attribute
Intoduced-to Name="name"
Visibility="public™ qyytro duces-Attribute
Aftribute Intoduced-to Type="String e
Name="_y" Introduction
Visibility="private" '
Type="int" Parameter Method Contains
! Name="name" »Name="setName"
Contains |Type="string" Takes-Parameter |visibility="public" |
¥ Introduces-Method
Attribute -) Intoduced-to Method : : /
Name="_x" ontaliciass Contains Return.Value MR ____ |Name="getName" |Introduction
Visihff;v::pfivate“ - ":me=""°'"t"l““‘—- Method | [Type="string’ eturns |Visibility="public" .o ins
Type=“in ontains Name="setX"/¥- . — Introduces-Method
Method Contains Takes-Parameter ?y_p;;"m;tﬁ.;d:c;ﬁ" |Pointcut | /
If!ame:"getx“ Method [Parameter) _Nir;_ej"_move"w Contains
A Returns Name="getY" [Name="x" g Ad/ + U
i - vices i
Return-Value @ tiirtis Type="int" crossemts p Pdwces Eoriniix Aspect i
Type="int ;—‘LRe!um_Value . : Type:"mathod-call"& Advice Name="UpdateDisplay
Type="int" % Takes-Paramete Method Pomlc?:"mn:e"
Name="y Name="setY" Kind="before' e alne
T ="int" i LY
(Yype=at| N
. calls |Advice
Class Contains »|Method < . — - ==~ - - - - -- -Pointcut="move"
Name="Display" Name="update" |Kind="after"

Rewriting rule-based model for aspect-oriented software evolution

Figure 6 Delete the advice before move (see online version for colours)

Rule of AspectJProgram iﬂ'
=l LHS 4|, RHS
b
Advice E : :
—— | Advices|a.pgi 2:Pointcut
Pointcut="move" po— Name="move"
Kind="hefore" Name="move .
Contains 6:Contains
J:Aspect JI:Aspect
Name="UpdateDisplay™ Name="UpdateDisplay™

Figure 7 Add the pointcut control (see online version for colours)

Nac 4| Rule1 of GraGra
NAC *| Lns i Rus
1:Aspect I = Contains [Pointcut |
Name="UpdateDisplay” | || - |1'p‘5pec‘ - |1'“5pec‘ - 2 Pmrnc:tf i
|Name=“UpdateD|spla3r' |Name=“UpdateD|spla3r' Name="control
Contains :
Contains (Sommads _ _ _
A I | Type="methed-call"
Pointcut -
Name="control™ Z:Method ME— REtlIrIlShRetum_Vmug 2:Method
Name="setX" Pointcut="control" Pl ype=int" | |Name="setx"
Kind="around"

4]

Figure 8 Graph after evolution (see online version for colours)

YeAGE V166 (Al

File Edit Mode Transform Parser Analyzer Preferences Help

Contains

A [T v]f

Parameter
Name="y"
Type="int"

Contains

Name="update"

lTakes-Paramete

Parameter |
Name="x"

Crosscuts

Lrosscuts

Advice
Pointcut="move"
Kind="after"

Type="riiethod-call"
~

= = TGad M (P [Al =1 T o o [Gad N (B ™
| [Tellc] [[% M B (a [hcllc] &lTel o0 &N B xA]2] (@] &
= T - [FFlEs (Al] Tog | [[sl [a==] Fizard [=] Hi s
e [V min e Ik Al +]-] mgl= [slgle] W] @ (g
Nac_ 4/ Rule3 of GraGra
NAC "I Lus §| RHS
Aspect Aspect : Aspect
m Name="UpdateDisplay™ Mame="DisplayAndControl™
Graph of GraGra
Intoduced-to
et « |aIntroduces.Attribute Contains
Attribute 55 visibility="public* |
Name="_y" e
Type="int" -~ o
Visibility="private" z:lr::‘?_‘e' S " {Method
Contains Type="String” | Takes-Parameter thl_
S e e Introduces-Method
=7 Intoduced-to Lo o
Contai i e iMethod
Class Contains 4 7_
-'Iiifmel.qu_s—Methou
Pointcut

Name="control”

Advice Returns
Pointcut="control"_____ IReturn-Value
Kind="around" Type="int"

=

Contains

Transformation of <GraGra> finished.

[

Addition rule: The rule in Figure 7 adds the pointcut
control detailed above, to the aspect UpdateDisplay ‘if
it is not already existed’. This condition is formulated
using the NACs depicted in the left side of the figure

(i.e., the existence of two advices with the same kind
for the same pointcut is prohibited). The RHS of the
rule depicts that the addition of the pointcut involves
the addition of its advice (advice around and its return

10 H. Cherait and N. Bounour

value). The join points are specified with the crosscut
edges. The attribute type of the crosscut edge specifies
that the join point is of the type method call.

¢ Modification rule: The modification rule is depicted
in the top of Figure 8. This rule substitutes the old
attribute Name of the aspect by the new one. The NAC
is used here to avoid the existence of other aspect with
the same name. We can note here that the modification
request is formulated as the deletion of the old element
(node or edge) and the addition of the new one.

After the application of these rules, the screenshot in
Figure 8 shows the graph represents the program
UpdateDisplay after transformation (evolution).

6 Tool validation
6.1 Tool overview

Our approach aims to reverse-engineer the Aspect] source
code to a more abstract representation as an attributed
coloured graph. The change requests are described as
rewriting rules. These last are applied to the Aspect] graph
via a graph transformation tool. So, the main problem in the
validation of our proposal is the conversion of the Aspect]
source code to a coloured graph representation. We have
full automated this conversion. Figure 9 presents the
overview of our tool validation, which can be resumed in
the following parts:

e Convertor tool: to represent the AspectJ source code as
an attributed coloured graph, we have implemented a
convertor tool. This last can be divided in three main
subconvertors.

1 AspectJML: This is an existing open source
proposed by Melo Junior and Mendonga (2005).
It is an extended markup language (XML)-based
markup language for representing source code
written in Aspect]. The Aspect] source code is
converted in XML format (Suzuki and Yamamoto,
1998) through the power of AspectJML.

2 XML-to-GXL convertor: We have implemented
this convertor. It converts the XML document
produced by Aspect]ML to a graph exchange
language (GXL) (Winter et al., 2001) modelling
the Aspect] source code as a coloured graph.

This convertor is an XML stylesheet language
transformation (XSLT) document (Clark, 1999);
where every Aspect] element is treated via a
specific XSLT template. The XML-based
representation (GXL) provides the
interchangeability of Aspect] model information
between various development tools such as CASE
tools. This seamless tool interoperability increases
our productivity to evolve an Aspect] source code.

3 GXL-to-GGX convertor: We have implemented
this convertor to convert the GXL document
produced by the XML-to-GXL convertor to a
graph grammar exchange (GGX). This last is the
XML-based format used in the AGG (Schultzke
and Ermel, 2012) tool to represent the host
graph. This format is a GXL graph extended with
layouts for nodes and edges. This convertor is an
XSLT document too. It is based on the graph
transformation environment used for the
transformations. So, if we want to use another
environment else than AGG, we just need to
modify the convertor to generate the appropriate
graph format of this environment (starting from the
GXL graph).

e AGG tool: The change requests must be formalised as
rewriting rules. Then, we use a graph transformation
environment to apply these rules on the attributed
coloured graph. In our validation, we used the AGG
tool (Schultzke and Ermel, 2012), which is a powerful
tool of graph transformation. We can formulate
properties, constraints; analyse the graph, ..., etc. The
transformation of the AspectJ graph produces a new
version of this one, where all the change requests are
applied as rewriting rules.

Note: After the modification of the graph (evolution), we
can regenerate the Aspect] source code following the
inverse path: convert the GGX graph to GXL (via XSLT).
This last must be converted in XML via XSLT, then in
Aspect] via Aspect]ML. The use of XSLT is very
interesting for our proposal. The processing of an XSLT
stylesheet is very speed; we can generate the GXL (or
GGX) document of a large application in an average of less
than 10 seconds. So, our validation strategy is very efficient
for smaller as well as large AspectJ source code.

Figure 9 Tool validation (see online version for colours)

Convertor Tool

Aspect] AspectIML .
source H ---- B representation
code
/ r F o
0 ' New
3 graph GGX

XML-to-GXL
convertor

3
GXL
lom i R == PH representation
GXL-10-GGX I—
convertor 1 P
/ AGG graph AGG
> format > T
ooy Tool

Change II Rewriting II |
Requests Rules

Rewriting rule-based model for aspect-oriented software evolution 11

6.2 Experimentation

In order to assess the feasibility and correctness of our
approach, some Aspect] programs were analysed and
represented by the proposed graph-representation using our
prototype tool. Our study used six Aspect] programs as
shown in Table 6. Five of them are taken from Aspect]
example package. The rationale behind was, this collection
of programs has also been used as benchmarks by a lot of
researches as case studies. Our experimentation also
includes a benchmark used in many research works
‘ProdLine’.

These benchmarks give us a variety of situations to
validate our prototype tool. For example, the Benchmark
Telecom contains ten classes and 39 methods; ProdLine
contains 11 aspects and 84 introductions, 15 pointcuts, and
so on. The applicability of our approach to these case
studies shows its feasibility to represent and validate AO
software evolution. We verified the coloured graphs (GXL
documents) generated by our tool against a manual
inspection of the graph and the associated analysed source
code for each of aforementioned programs.

Our experiments showed that the coloured graphs
generated by the tool were correct for smaller benchmarks
(e.g., Tjp) as well as the large ones (e.g., ProdLine).

The execution time needed for the generation of graphs
is dependent with the size of the Aspect] source code as
well as the number of their modules. The graph in Figure 10
shows the execution time (in millisecond) for the generation
of GXL graphs for every previous Benchmark. So, our
representation of AO software provides a useful support for
gaining a better knowledge of the internal structure of these
complicated programs, by reducing the effort needed for
obtaining them in a variety of software engineering tasks,
and especially in AO software evolution.

Figure 10 Execution time in millisecond (see online version

for colours)

3000 — #2999

2000 2089
1500 567
1000 o€ D4as

So, we can use our prototype as a reverse-engineering tool
of Aspect] source code.

7 Related work

This section of the paper presents related works discussing
the benefits of our proposal in contrast to the other ones.
Our work involves the following research areas:

e Graph-based modelling for AO software: A variety of
graph-based models have been proposed to represent
the different features of the AO programs (Bernardi
and Di Lucca, 2007; Lemos et al., 2007; Parizi and
Abdul Ghani, 2008; Zhao, 2003). Each of these models
puts the accent on some of the specific features of a
program for slicing or testing purposes, not for
evolution propose. Most of them are fine-grained
representations, which represent a program at the
‘statements’ level, i.e., nodes represent statements and
arcs represent the different dependencies between them.
However, the tendency in the evolution techniques is to
use coarse-grained representations, that put in evidence
the different components of the artefact (e.g., aspects,
advices, methods) and the dependencies between them
(e.g., membership, crosscutting). Our approach follows
this principle to model the AO software evolution.

e Aspect-oriented software evolution: It is still an
emerging research area; this is largely due to the fact
that few large-scale AO software systems exist today.
This is why evolution models for AO software systems
do not exist yet, hence, our proposal. However, many
techniques (Chavez et al., 2009; Griswold et al., 2006;
Kellens et al., 2006; Pires et al., 2011) exist to treat the
fragile pointcut problem. For instance, Kellens et al
(2006) propose a model-based pointcuts. They
decouple the pointcut definitions from the actual
structure of the base program, and define them in terms
of a conceptual model of the software instead. We
believe that our abstract representation of the AspectJ
source code offered by our approach can be used
complementary with these techniques to alleviate this

problem.

Table 6 Analysed programs
Program #Classes #Aspects #Method
Telecom 10 3 39
Bean 2 1 16
Observer 6 2 9
Tip 1 1 5
Introduction 1 3 13
ProdLine 9 11 10
Program #Pointcut #Advice #lIntroduction
Telecom 6 6 3
Bean 1 2 1
Observer 1 1 11
Tip 2 1 -
Introduction - - 6
ProdLine 15 15 84

Our model makes more visible and clear the dependencies
between the crosscutting concerns of the system as well as
all the dependencies between the aspects and the base code,
ie., if we change any join point, we can detect the
crosscutting concerns (aspects) or more specifically the

12 H. Cherait and N. Bounour

pointcut(s) related to this join point. Using one of the
previous techniques, we can verify that the pointcuts are
well implemented in our model, and consequently, in the
AO source code.

8 Conclusions

We proposed in this paper an evolution model for AO
source code written in Aspect]. It is based on the algebraic
graph rewriting formalism which gives it a formal
background and an automatic implementation method
(employing graph rewrite tools). Our approach starts by
reverse engineering the source code to a coloured graph;
representing the different entities of the system and their
dependencies. The evolution requests are formalised using
rewriting rules on the system graph. We can combine
several rules to achieve different evolution requests of an
AO software system. A prototype tool is built and case
studies are experimented to demonstrate the feasibility of
our approach. Although this is not the scope of this paper,
we believe that this approach is general enough to be
applicable to other AO programming languages, i.c., even if
AO languages may require specific kinds of nodes and
edges, they can be all expressed using the same notation as
an attributed coloured graph.

References

Bernardi, M.L. and Di Lucca, G.A. (2007) ‘An interprocedural
aspect control flow graph to support the maintenance of
aspect oriented systems’, in ICSM’07: Proceedings of
IEEE International Conference on Software Maintenance,
pp.435-444.

Blomer, J., Geib, R. and Jakumeit, E. (2012) The GrGen.NET User
Manual [online] http://www.grgen.net (accessed 3 February
2012).

Chavez, C., Garcia, A., Batista, T., Oliveira, M., Sant’Anna, C.
and Rashid, A. (2009) ‘Composing architectural aspects
based on style semantics’, in AOSD’09: Proceedings of the
8th ACM International Conference on Aspect-oriented
Software Development, pp.111-122.

Clark, J. (1999) XSL Transformations (XSLT) Version 1.0,
Recommandation 16, November [online]
http://www.w3.org/TR/xslt (accessed 31 January 2012).

Corradini, A., Montanari, U. and Rossi, F. (1996) ‘Graph
processes’, Fundamenta Informaticae, Vol. 26, Nos. 3 and 4,
pp.241-265.

Ehrig, H., Ehrig, K., Prange, U. and Taentzer, G. (2006)
‘Fundamentals of algebraic graph transformation’, EATCS
Monographs in Theoretical Computer Science, Springer,
ISBN: 978-3-540-31187-4.

Glauert, J.R.W., Kennaway, R., Papadopoulos, A.G. and Sleep, R.
(1997) ‘Dactl: an experimental graph rewriting language’,
Journal of Programming Languages, Vol. 5, No. 1,
pp-85-108.

Godsil, C. and Royle, G.F. (2001) ‘Algebraic graph
theory’, Graduate Texts in Mathematics, Springer,
ISBN: 978-0-387-95220-8.

Griswold, W.G. et al. (2006) ‘Modular software design with
crosscutting interfaces’, IEEE Journal of Software, Vol. 23,
No. 1, pp.51-60.

Hammad, M., Hammad, M. and Bsoul, M. (2014) ‘An approach to
automatically enforce object-oriented constraints’, Int. J. of
Computer Applications in Technology, Vol. 49, No. 1,
pp-50-59.

Heckel, R., Kuster, J.M. and Taentzer, G. (2002) ‘Confluence
of typed attributed graph transformation systems’, in
Proceedings of ICGT’02, LNCS, Springer-Verlag, Barcelona,
Spain, Vol. 2505, pp.161-176.

Kellens, A., Mens, K., Brichau, J. and Gybels, K. (2006)
‘Managing the evolution of aspect-oriented software with
model-based pointcuts’, in ECOOP’06: Proceedings
of the 20th European Conference on Object-Oriented
Programming, LNCS, Springer-Verlag, Nantes, France,
Vol. 4067, pp.501-525.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C.,
Loingtier, JM. and Irwin, J. (1997) ‘Aspect-oriented
programming’, in ECOOP’97: Proceedings of 11th European
Conference on Object-Oriented Programming, LNCS,
Springer-Verlag, Vol. 1241, pp.220-242.

Lehman, M.M. and Belady, L. (1985) Program Evolution —
Processes of Software Change, Academic Press Professional,
Inc., San Diego, CA, USA, 538 pp., ISBN: 0-12-442440-6.

Lehman, M.M. and Ramil, J.F. (2007) ‘Software evolution
and software evolution processes’, Annals of Software
Engineering, Vol. 14, Nos. 14, pp.275-309.

Lemos, O.A.L., Vincenzi, AM.R., Maldonado, J.C. and
Masiero, P.C. (2007) ‘Control and data flow structural testing
criteria for aspect-oriented programs’, Journal of Systems and
Software, Vol. 80, No. 6, pp.862—882, Elsevier.

Mehner, K., Monga, M. and Taentzer, G. (2009) ‘Analysis of
aspect-oriented model weaving’, Transactions on AOSD 5,
LNCS, Springer-Verlag, Vol. 5490, pp.235-263.

Melo Junior, L.S. and Mendonga, N.C. (2005) ‘Aspect)ML: a
markup language for Aspect)’, in WASP’05: Proceedings of
the 2nd Brazilian Workshop on Aspect Oriented Software
Development, Uberlandia, MG, Brazil.

Mens, T. (2001) ‘A Formal foundation for object oriented software
evolution’, in ICSM’01: Proceedings of 17th IEEE
International Conference on Software Maintenance, Florence,
Italy, pp.549-552.

Pan, W., Jiang, B. and Xu, Y. (2013) ‘Refactoring packages of
object-oriented software using genetic algorithm based
community detection technique’, Int. J. of Computer
Applications in Technology, Vol. 48, No. 3, pp.185-194.

Parizi, R M. and Abdul Ghani, A.A. (2008) ‘AJcFgraph-Aspect]
control flow graph builder for aspect-oriented software’,
International Journal of Electrical and Computer
Engineering, Vol. 3, No. 3, pp.170-181.

Pires, P.F., Delicato, F.C., Pinto, M., Fuentes, L. and Marinho, E.
(2011) ‘Software evolution in AOSD: a MDA-based
approach’, in Proceedings of CBSE’11, Boulder, Colorado,
USA, pp.193-197.

Schultzke, T. and Ermel, C. (2012) AGG Environnement: A Short
Manual, Short Manual edition, User Manual [online]
http://tfs.cs.tuberlin.de/agg/ShortManual.ps
(accessed 15 March 2012).

Suganthi, S. and Nadarajan, R. (2013) ‘Role of aspect-oriented
approach in dynamic adaptability’, Int. J. of Computer
Applications in Technology, Vol. 47, No. 4, pp.334-342.

Rewriting rule-based model for aspect-oriented software evolution 13

Suzuki, J. and Yamamoto, Y. (1998) ‘Managing the software
design documents with XML’, in Proceedings of the 16th
Annual International Conference on Computer
Documentation, ACM Press, New York, pp.127-136.

The Aspect] Team (2012) The Aspect] Programming
Guide, Online manual [online] http:/eclipse.org/aspectj/
(accessed 31 January 2012).

Tourwé, T., Brichau, J. and Gybels, K. (2003) ‘On the existence of
the AOSD evolution paradox’, in AOSD’03: Proceedings of
Workshop on Software-engineering Properties of Languages
for Aspect Technologies, Boston, USA.

Vollmann, D. (2002) Visibility of join-points in AOP and
implementation languages’, in AOSD’02: Proceedings of
Second Workshop on Aspect-Oriented Software Development,
Bonn, Germany, pp.65—69.

Winter, A., Kullbach, B. and Riediger, V. (2001) ‘An overview of
the GXL graph exchange language’, in Proceedings
of International Seminar Dagstuhl Castle, LNCS,
Springer-Verlag, Germany, Vol. 2269, pp.324-336.

Xu, J., Rajan, H. and Sullivan, K. (2004) ‘Understanding aspects
via implicit invocation’, in ASE’04: Proceedings of 19th
IEEE International Conference on Automated Software
Engineering, pp.332-335.

Zhao, J. (2003) ‘Data-flow-based unit testing of aspect-oriented
programs’, in COMPSAC’03: Proceedings of 27th Annual
IEEE International Computer Software and Applications
Conference, Dallas, Texas, pp.188—197.

