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Abstract— Monitoring environmental data to ensure the 

safety and reliability of public resources has become a crucial 

task in data-driven systems. One key aspect of this monitoring is 

the detection of anomalies—data points or behaviors that 

significantly diverge from the norm. This study explores the use 

of a density-based clustering method, DBSCAN, to identify such 

anomalies within datasets collected from drinking water 

treatment facilities. DBSCAN's capability to recognize dense 

regions and isolate noise makes it well-suited for flagging 

irregularities in complex, real-world data. By applying this 

method to extensive datasets with diverse attributes, the 

research aims to enhance the consistency and safety of drinking 

water production processes, contributing to improved public 

health outcomes and operational resilience in water 

management systems. 
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I. INTRODUCTION  

Anomaly detection refers to the process of identifying data 
patterns that deviate significantly from established or expected 
behavior [1]. This process becomes particularly critical when 
such irregularities provide valuable insights into the 
underlying system. Anomalies may stem from diverse sources 
including cyber-attacks, sensor malfunctions, environmental 
shifts (e.g., climatic variations), or human oversight [1]. Its 
applicability spans numerous domains, including but not 
limited to intrusion detection, military reconnaissance, 
fraudulent transaction identification, healthcare diagnostics, 
insurance risk analysis, and preemptive fault detection in 
safety-critical infrastructure [2][3]. A primary advantage of 
anomaly detection lies in its capacity to transform atypical 
patterns into actionable intelligence. For instance, 
unauthorized data exfiltration from a compromised computer 
could manifest as unusual network traffic, prompting early 
intervention [2][4]. Similarly, detecting irregularities in MRI 
scans can assist in diagnosing malignant tumors [2][5], and 
anomalous telemetry from spacecraft systems may signal 
component degradation. Likewise, inconsistencies in financial 
transactions can serve as early indicators of credit card or 
identity fraud [2][6].  

In the context of water treatment and production systems, 
continuous monitoring of water quality is vital. One of the 
most technically demanding aspects of this process involves 
determining the appropriate coagulant dosage, a factor 

essential for achieving optimal water purification [7][8]. 
Accurate dosing relies heavily on precise and dependable 
sensor readings of raw water parameters. Consequently, high-
level processes, such as optimizing coagulation tests, must be 
resilient to sensor anomalies, including transient faults or 
inaccurate inputs [7][9]. Effective anomaly detection in these 
sensing systems is thus indispensable for maintaining 
operational integrity and ensuring high-quality water output. 
The timely identification of sensor faults, data outliers, and 
systemic failures has drawn increasing attention due to its 
implications for minimizing system downtime, enhancing 
productivity, and upholding safety and reliability standards 
[7][10][11]. This study aims to detect and validate potential 
sensor misreadings, data corruption, or anomalous raw water 
values to enable the reconstruction of trustworthy input for 
automatic coagulation control systems. By doing so, it ensures 
the integrity and reliability of data gathered from various water 
quality sensors [7][9]. However, one of the major challenges 
in applying supervised machine learning techniques to this 
problem is the scarcity of labeled anomalous instances 
[7][9][10]. As a result, unsupervised learning approaches 
present a more viable alternative in such scenarios [7]. 

Principal component analysis (PCA) has been widely 
applied in data mining to study data structure. In PCA, new 
orthogonal variables (latent variables or principal 
components) are obtained by maximizing the variance of the 
data. The number of latent variables (factors) is much smaller 
than the number of original variables, so the data can be 
visualized in a low-dimensional PC space. Although PCA 
significantly reduces the dimensionality of the space, it does 
not reduce the number of original variables, as it uses all the 
original variables to generate the new latent variables 
(principal components). For interpretation or future 
investigations, reducing the number of variables would often 
be very useful. Feature (variable) selection can be achieved 
either by choosing informative variables or by eliminating 
redundant variables. [12]  

In this research, the DBSCAN algorithm (Density-Based 
Spatial Clustering of Applications with Noise) is employed to 
perform anomaly detection in the water treatment context. 
DBSCAN is a well-established density-based clustering 
technique known for its ability to identify clusters of arbitrary 
shape while effectively isolating noise [13][14]. The algorithm 
relies on two principal parameters—Epsilon (Eps) and 
Minimum Points (MinPts)—to define neighborhood density. 
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Performance metrics include the number of identified clusters, 
unassigned data points, classification errors, and the time-to-
noise ratio [13]. 

The structure of this paper is as follows: Section 2 outlines 
the dataset and describes the DBSCAN algorithm alongside 
the feature selection methodology. Section 3 presents and 
discusses the experimental results, while Section 4 offers 
concluding remarks. 

II. MATERIALS AND METHODS 

A. Study Area and dataset  

The Cheliff dam is geographically located about 30 km 
northeast of the city of Mostaganem and 363 km northwest of 
Algiers (Fig. 1). It is located between the following 
coordinates: 35° 59' 00" N, 0° 24' 47" E. Mostaganem has a 
cold semi-arid climate and an average precipitation of about 
347 mm/year. The average yearly temperature is 17.9 °C.  

In this research, we seek to apply our approach for surface 
water quality monitoring using several physicochemical 
parameters. These parameters were collected from the Sidi 
Lahdjel production station over two years. Our knowledge of 
the treatment process is limited to data recorded at this station. 
More quality parameters of the surface water are measured 
daily by sensors, in addition to laboratory tests, which are 
carried out every week at all treatment process. The above 
physicochemical parameters were used to analyze the 
relationship among these descriptors and to verify the water 
quality monitoring model. Descriptive statistics of water 
parameters are given in Table 1 [15]. 

 

Fig. 1. Map showing the region under study: Cheliff dam – 
Mostaganem – Algeria [Google Maps]. 

Variables Min Max Mean Standard 

deviation 

Color 11 169 58.1 36.1473 

Turbidity (NTU) 0.66 21.7 6.5 4.2521 

pH 6.25 8.37 7.97 0.2692 

Temperature (°C) 11.3 29 19.58 4.9852 

Conductivity 

(µs/cm) 

1144 3600 2125.6 408.1714 

TDS (mg/L) 689 1728 1208.2 206.1315 

OM (mg/L) 2.47 6.7 2.47 0.9347 

Chlorine (mg/L) 192 724 425.29 99.3793 

Bicarbonate (mg/L) 83 299 160.02 35.6523 

Calcium (mg/L) 59 163.5 127.2 22.0475 

Magnesium  (mg/L) 44 110 74.1 11.1634 

Total Hardness (°F) 45 77 62.33 7.4717 

FTA (°F) 6.8 19 13.08 2.7888 

Chlorine Test 0.12 4.84 1.16 0.9462 

Coagulant (mg/L) 1.2 12 3.81 2.4355 

TABLE I. Descriptive statistics of water parameters. 

B. Principal component analysis (PCA) 

The PCA technique (also known as the eigenvector 
regression filter or the Karhunen-Loeve transform [16][17]) is 
used for dimensionality reduction, which involves zeroing out 
one or more of the weakest principal components, resulting in 
a lower-dimensional projection of the raw feature data that 
preserves the maximal data variance. The dimensionality 
reduction process is achieved through an orthogonal, linear 
projection operation. Without loss of generality, the PCA 
operation can be defined as 

Y = XC         (1) 

With Yϵ RSxP is the projected data matrix that contains P 
principal components of X with P ≤ N. So the key is to find the 
projection matrix C ϵ RNxP, which is equivalent to find the 
eigenvectors of the covariance matrix of X, or alternatively 
solve a singular value decomposition (SVD) problem for X 
[17][18] 

X = U Σ VT     (2) 

Where U ϵ RSxS and V ϵ RNxN are the orthogonal matrices 
for the column and row spaces of X, and Σ is a diagonal matrix 
containing the singular values,λ𝑛 for n = 0…, N-1, non-
increasingly lying along the diagonal. It can be shown [18,19] 
that the projection matrix C can be obtained from the first P 
columns of V with 

V = [V1,….,VN]      (3) 

And  

C = [C1,….,CP]  (4) 

Where vn ϵ RNx1 is the nth right singular vector of X, and cn 
= vn. 

In fact, the singular values contained in Σ in (2) are the 
standard deviations of X along the principal directions in the 
space spanned by the columns of C [17][18]. Therefore, λ𝑛

2  
becomes the variance of X projection along the nth principal 
component direction. It is believed that variance can be 
explained as a measurement of how much information a 
component contributes to the data representation. One way to 
examine this is to look at the cumulative explained variance 
ratio of the principal components, given as 

𝐑𝒄𝒆𝒗= 
∑ 𝛌𝒏

𝟐𝑷
𝒊=𝟏

∑ 𝛌𝒏
𝟐𝑵

𝒊=𝟏
    (5) 

Moreover, illustrated in Fig. 2. It indicates that keeping 
only a few principal components could retain over 90% of the 
full variance or information of X. As a comparative study, a 
varying number of principal components has been used and 
examined in the following evaluation section. [17] 
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Fig. 2. Cumulative explained variance ratio over 
components. 

C. DBSCAN algorithm 

Density-based spatial clustering of application with noise, 
DBSCAN is a data-clustering algorithm that forms clusters 
with a maximal set of density-connected points. Clusters in the 
data space are typically high-density regions separated by 
lower object density regions.  

DBSCAN defines the density in terms of the following: 

1. ε-Neighborhood: Objects within a radius of ε (eps) 
from an object and can be represented by the relation, 

𝑁𝜖(𝑞): {𝑞𝘐𝑑 (𝑝, 𝑞) ≤  𝜖      (6) 

Where p, q are data points in the space and d(p, q) 
represents the separation between the data points. 

2. High density: ε-Neighborhood of an object containing 
at least minpts of data points. [2] 

The algorithm requires two parameters: the neighbourhood 
distance ε (eps) and the minimum number of the points needed 
to form a high-density region minpts. The parameters 
categorize the data points as core points, border points, and 
outlier points. A core point has more than minpts number of 
points within the ε (eps) distance and lies at the cluster's 
interior. A border point is in the neighbourhood of a core point 
but has fewer than minpts number of points within eps. Outlier 
points are the anomalous points that are neither a core point 
nor a border point and do not fit any cluster. 

The DBSCAN algorithm works as follows. An arbitrary 
point that has not been visited yet is selected, and its ε-
neighborhood is retrieved. If the number of neighborhood 
points is greater than the minpts, a cluster is started; else, the 
point is marked as noise. If the point being noise is later found 
to lie in the ε- neighborhood of some other point with apt size, 
it would be made part of that cluster. If a point lies in a cluster's 
high-density zone, then its ε-neighbourhood is also a part of 
that cluster. All points found within the ε- neighbourhood are 
added to the cluster, as is their own ε-neighborhood if they are 
dense until it is found that the density-connected cluster is 
complete. Again, an unvisited point is retrieved and processed 

as stated above, leading to the determination of a further 
cluster or noise. [2] 

III. EXPERIMENTAL RESULTS AND DISCUSSION  

In this section, the aforementioned proposed framework 
was applied to water quality data from Cheliff dam station in 
Mostaganem (Algeria). For testing the applicability of the 
suggested methodology, our monitoring system consists of 
two steps: features selection and sensors anomalies detection 
in the different measurements for water quality assessment. 
The feature selection technique is based on PCA, and sensors 
anomalies detection technique are based on DBSCAN.  All 
proposed methods were implemented and assessed using 
MATLAB2019b environment software. 

A. Features selection using PCA method 

The PCA method is used with a variation of 80 to 90% of 
the eigenvalues, without any transformation of the resulting 
components that are not correlated. A total of 142 samples of 
twelve physicochemical parameters of water quality are used 
in this phase. Parameters such as color, pH, temperature (T°), 
electrical conductivity (EC) and turbidity (TU) are collected 
by sensors installed in all treatment processes of the plant. 
Every week, in the laboratory, some chemical parameters are 
examined such as: TDS, OM, Chlorine, bicarbonate (B), 
Calcium, Magnesium (Mg) and Total Hardness (TH). The 
aforementioned collected data will be applied to verify the 
water quality assessment model. 

First, a PCA analysis is performed to determine the 
descriptor parameters or input variables most representative of 
water quality. This involves extracting relevant information 
such as: correlation matrix, histogram of eigenvalues and 
correlation circle. It should be noted, however, that all 12 input 
variables of this database are retained due to the importance of 
its parameters for water quality and the continuity of their 
measurements over time. The PCA analysis applied to all the 
database data provides Table II and the histogram in Figure 3. 

 

Fig. 3. The PCA analysis 
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TU 0.09 0.58 0.15 0.27 0.08 0.08 -0.20 0.31 -0.62 0.06 -0.00 -0.01 

PH 0.06 0.40 0.18 -0.42 -0.36 0.26 0.64 0.03 0.03 -0.03 0.00 0.00 

T° -0.07 -0.12 0.60 -0.16 0.51 -0.00 0.08 0.27 0.16 0.16 0.07 -0.41 

EC 0.36 -0.11 0.36 -0.10 0.32 -0.01 0.03 -0.14 -0.10 -0.32 -0.14 0.66 

TDS 0.45 -0.05 0.00 -0.06 -0.01 -0.01 -0.04 -0.39 -0.22 -0.46 0.17 -0.57 

OM 0.01 -0.13 0.37 0.57 -0.34 -0.50 0.36 -0.01 -0.01 -0.01 -0.00 -0.01 

Ch 0.45 -0.05 0.04 -0.01 -0.01 0.03 0.00 -0.38 -0.08 0.79 -0.02 0.01 

B -0.02 0.22 -0.45 0.14 0.59 -0.24 0.54 -0.11 -0.03 0.01 0.02 -0.01 

Cal 0.36 0.06 -0.16 -0.31 -0.08 -0.50 -0.09 0.38 0.09 0.00 -0.53 -0.12 

Mg 0.28 -0.24 -0.12 0.42 0.03 0.58 0.19 0.24 0.11 -0.06 -0.42 -0.13 

TH 0.43 -0.11 -0.17 0.02 -0.04 -0.02 0.04 0.49 0.14 0.02 0.68 0.15 

Co 0.17 0.56 0.11 0.25 0.04 0.00 -0.23 -0.18 0.68 -0.08 0.01 -0.00 

PC 1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC 
12 

Eigenvalues 

4.64 2.21 1.77 1.07 0.89 0.72 0.48 0.1 0.06 0.03 0.01 0.002 

Total variance proportion (%) 

38.68 18.39 14.76 8.95 7.42 6.02 4.02 0.82 0.54 0.25 0.05 0.02 

Cumulative variance proportion (%) 

38.68 57.08 71.84 80.80 88.23 94.26 98.28 99.1 99.66 99.91 99.97 100 

TABLE II. Variables of eigenvectors obtained by applying 
PCA. 

A variance-covariance matrix is formed using PCA on the 
input variables. According to Table II, the PCA results and 
statistical parameters such as eigenvalues, cumulative variance 
proportion, and variance proportion are shown. The four PCs 
represent 80.80% of the total variance proportion of the input 
samples and eliminate the remaining components, as shown in 
Table II. These PCs mainly calculate the initial variance of the 
data. In addition, 1CP applications are used to obtain 
eigenvectors to evaluate the coefficients for PC training. The 
correlations between each variable and the learned principal 
components are shown in Table II. In this table, the most 
effective parameters in PC training are shown in red bold. The 
total variance in the dataset represents 80.80% of the first four 
principal components combined. The first component (PC1) is 
38.68%, 18.39% being the second component (PC2), 14.76% 
being the third component (PC3) and 8.95% of the total 
variance being the fourth component (PC4).  

In Table II, the rapid decrease of the eigenvalues is 
apparent. For the evaluation of the predominant 
physicochemical processes, the eigenvalues of the first four 
principal components (PC1-PC4) can be used. The EC and B 
concentrations are very positive (0.59 – 0.66), while the Mg 
concentration is weakly positive for the first component (0.58). 
T° and TH have high positive loadings in PC2 (0.60 - 0.68), 
and the other concentrations show weak positive loadings 
(0.38-0.45). The TU concentrations in PC3 have high positive 
loadings (0.58). The pH concentrations for PC4 show high 
positive loadings (0.64), while Mg displays moderate positive 
loadings (0.58), and TU and TH show positive loadings (0.58 
- 0.68). 

According to Table II, the first four PCs are the input 
characteristics of the evaluated classifiers. The variables 
selected are: pH, Temperature (T°), Electrical Conductivity 
(EC) and Turbidity (TU). Consequently, monitoring must take 
place at the treatment plant and continuously using selected 
parameters that are the most representative used due to the 
strong correlations existing between all parameters, as well as 
the most fundamental and easily measurable by physical 
sensors in the water quality monitoring system. 

B. Anomaly detection using DBSCAN method  

This segment of the study focuses on identifying anomalies 
within the sensor-generated data corresponding to selected 
physicochemical parameters relevant to water quality 
evaluation. To this end, the DBSCAN (Density-Based Spatial 
Clustering of Applications with Noise) algorithm is employed 
as an unsupervised technique for outlier detection. The dataset 
under analysis comprises four key variables—Temperature 
(T°), pH, Electrical Conductivity (EC), and Turbidity (TU)—
which were previously selected through the Relief-based 
feature selection process. These refined inputs serve as the 
basis for the anomaly detection framework illustrated in Figure 
4. 

  

 

  

Fig. 4. Evolution of the water quality variables. 

In the anomaly detection process, the DBSCAN algorithm 
parameters were set with minPts = 4 and ε = 2. It is important 
to note that the number of anomalies detected is sensitive to 
variations in these parameter values. During the experimental 
validation phase, intentional faults were introduced into the 
turbidity and temperature sensors to observe their impact on 
the data visualization. The algorithm was applied to a dataset 
comprising 142 samples, with the results illustrated in Figure 
5.  
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Fig. 5. Results obtained with the DBSCAN algorithm. 

To evaluate whether a sensor is producing faulty readings, 
hypotheses were tested through the generation of test statistics, 
which are essential tools in process monitoring for anomaly 
detection. Simulated sensor faults were introduced on day 60, 
and their effects were analyzed through graphical 
representations (Figure 6). The presence of outlier points—
highlighted in red—confirmed the successful detection of 
anomalies in both the turbidity and temperature sensors. 

 

 

Fig. 6. Fault detection with the DBSCAN algorithm. 

Further, a dual-fault scenario was simulated, wherein 
simultaneous disturbances were injected into the turbidity and 
temperature sensors on days 100 and 101. As evidenced in 
Figure 7, the observed deviations in sensor behavior confirmed 
the malfunction of both units. 

 

 

Fig. 7. Simulation of two faults by the DBSCAN 
algorithm. 

IV. CONCLUSION  

This study presents a comprehensive framework for water 
quality assessment, integrating two key methodologies: the 
ReliefF algorithm for feature selection and the DBSCAN 
clustering technique for sensor anomaly detection. The first 
contribution lies in dimensionality reduction through ReliefF, 
enabling the selection of the most informative 
physicochemical variables. The second focuses on the 
application of DBSCAN to identify sensor anomalies in real-
time. Accurate anomaly detection in drinking water treatment 
systems is a critical component of quality assurance. The 
findings demonstrate that DBSCAN is capable of reliably 
detecting sensor faults, with performance comparable to other 
established techniques referenced in [7]. Real-world 
experimental data from the treatment plant further validate the 
robustness and efficacy of this approach. Importantly, this 
methodology also contributes to cost-efficiency in system 
monitoring by enhancing fault detection capabilities with 
minimal added complexity. 
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