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Notations

e (e1, €9, ..., €,) is the canonical basis in R™.
® T -y =1y + ... + T,Y, is the scalar product in R".
e For z € R", |z| denotes the Euclidean norm in R™.
°a.e. designates almost everywhere
o (fxg)(x) = [ f( g(y)dy is the product of the convolution of the functions f and g.
olf f: R” — C, the support of f is denoted by supp f.
e D(R™) is the space of functions C*°(R") with compact support, D’(R") is the dual space of
D(R™), is also called the space of distributions on R™.
e S(R") is the Schwartz space, consisting of rapidly decreasing C*°(R"™) functions on R", the
dual S’(R") is the space of tempered distributions.
o If f € L'(R), then its Fourier transform is:

F(f(x)(&) = /Rexp(—27ria:.§)f(x)dx
and its inverse Fourier transform is:

F©) () = / exp(2riz.€) F(€)de

* ¢ is the conjugate exponent of p, ; + ¢ = 1 where p € [1, +oc].
e Let a € R", 7, is the translation operator defined by 7,f(-) = f(- — a).
e [?(IR") is the space of measurable functions f on R” such that

| fllze@ny = ( - |f(x)|pdx)% < 0.

e (7 is the space of sequences (ay);, such that ||(a;)||w = O i, \ak|q)% < 00.
e ('}, denotes the class of causal functions that are piecewise continuous and of exponential
order.

e ['(s) denotes the Laplace transform of the function f.
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CHAPTER |

LP SPACES

£ ebesgue spaces are Banach spaces, i.e., complete normed vector spaces, whose definition
and study require the theory of integration.

In this entire chapter, we fix once and for all a measure space. (X, M, p).

1.1 Convex functions and inequalities

Definition 1.1. A function f defined on the open interval |a, b and taking values in R is said to
be convex if, For all x, y and X\ such that

a<xr<b , a<y<b and 0< A<,

we have
fFA=Nx+Ay) <(1=A)f(@)+Af(y)

If — f is convex, f is called concave.

Remarks 1.1. 1) If f is convex on ]a, b[ and if z1, 5 and x5 are such that a < 27 < x5 < x3 < b,

f(x2) — f(x1) < f(x3) — f(x2)

To — 1 X3 — T2

then we have

2) If f is convex, and if f exists on |a, b[ it follows that for x; and x5 such that a < 27 < x5 < b,

we have
f(@1) < f(za).

3) If f is convex, and if f” exists on |a, b[ then we have
f//(x) Z O’

for any x such thata < z < b.



1.1. CONVEX FUNCTIONS AND INEQUALITIES 6

Definition 1.2. Let p and ¢ be two real numbers belonging to [1, +0c0]. We say that p and ¢ are

conjugate exponents if
1 1
4o =1
p g
This definition implies 1 < p < coand 1 < ¢ < oo. Since p = 1 we have ¢ = +00, we say that 1

and (+o00) are conjugate exponents.

Theorem 1.1. ( Young's Inequality ) Let a and b two positive real numbers, then we have

1
ab < —af + — bq
p q

with p, q €]1, +ool and p, q are conjugate exponents.

Proof. The function In z is concave on |0, +00|

ie., In(Axy + Aowe) > Ay In(x1) + Ao In (zg), Ap + Ao = 1.
So, for \; :%,)\2 = éwehavekl—ir)\g :I—l)—k%: 1.

we put z; = a” > 0, 29 = b? > 0, then we have

1 1
In <1ap + 1bq> > —In(d”) + —In (b9)
p q p q
> In(a?)? +In (b9
> In(a)r (b7)
= In(ab)
ie., .
ab < =aP + =b.
p q

O]

Theorem 1.2. ( Holder’s inequality ) Let (X, M, 1) be a measure space, with f and g being two func-
tions f, g : X — R, measurable. Then we have

[ @@t < ([ 1wr aute) )(/Ig ) du() )

where p and q are two conjugate exponents.

Proof. 1f one of the two terms in the product on the right-hand side of the inequality is zero or
infinite, the inequality is automatically satisfied, so we may assume this is not the case. We put

/(@) i Gl — 9@l

F(z) = T T
(fX|f( )P du(w ))p (fX|9 ) dpu( ))q

©2022, FERAHTIA Nassim Integral transformations in L spaces



1.1. CONVEX FUNCTIONS AND INEQUALITIES

we then have

| @) duto) = [ (@) dute) 1.

If z € X is such that
0< F(z)<oo and 0<G(x) < oo,

there exist two real numbers ¢t and v such that

Since the function e” is convex, and p and ¢ are conjugate exponents, we have

ev.

tiu 1 1
p e < — —|— —
p q
It follows that, for every z in X,

F(z)G(z) <

By integrating with respect to the measure 1, we have

1 V4 1 q
/X F@)G)in) < /X (F(a)) du(o) + /X (G(2))" du(x)
S,
p q
ie.,
/ Sl el
([ [f@)Pdu(x))? ([ lg(@)|" du(x))
so we have
1
. 7 sl <1
(fx | f(@)IF du(x))” (fX\g quu /
ie.,

J it < ( [ 111 duto ) (/[ 1ol dute )

]

Remark 1.1. When p = ¢ = 2, Holder’s inequality is in this case known as the Cauchy-Schwarz

inequality.

Theorem 1.3. ( Minkowski Inequality ) Let (X, M, 1) be a measure space, with, f and g being two

©2022, FERAHTIA Nassim Integral transformations in L spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON £ AND L* 8

functions, f, g : X — R, measurable. We have V' 1 < p < 00

([ 156+ s duta ) ([ v aute) ) + ([ o aute) )

Proof. We have

ie.,
[f@) + 9@ < F@)]1f(@) +g@) + lg(@)] 1f (@) + g(2)" . (1.1)
By applying Holder’s inequality, we have

@15 + @l duto) < ( [ 171 duta) )(/|f e p”q),
[ 1o+ s o) = ([P anie))” ([ 1560+ o)

So, the equation (1.1) becomes

[ 1@+ 9P duta) ((/|f P du) ) +( [ or dute) ))(/u )+ 9(a) 7 dyo >)1,

And since (p — 1)q = p, we then have

[ 1@+ gt aute) ((/u P du(a ) + ([ o aute) ))(/u + 9@ due >)1.

We divide the two members by ([, | f(z) + g(z)[" du(z)) %, we obtain the desired result. O

and

1.2 Elementary definitions and properties on £’ and L”

1.2.1 the space L? (X, M, p)

Definition 1.3. Let p € R with 1 < p < oo, we put

LP(X) = {f (X, M, p) = (R, B(R), ), fis measurable and /X |f ()P du(z) < —|—oo} :

©2022, FERAHTIA Nassim Integral transformations in L spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON £ AND L* 9

We note X
1fllee = 1A, = (/X \f(fﬂ)lpdu(w)) ,
we will verify that || f||,, is a semi-norm.

Particular case
If (X, M,pn) = (N,P(N),card), we note ¥ = {z = (Zn)n>0: D_ep |Zn|” < 0o}, with the norm

1
[zl = llzll, = GoaZo l2al”)7 -

Remark 1.2.

ferr < |fll, <+ooand measurable, because

fell < / |f ()" du(x) < 400 and measurable
X

1
& </ |f(z) d,u(x)) " < oo and measurable
b

< |Ifll, < +oo and measurable.

Definition 1.4. A measurable function f : X — R is said to be essentially bounded if there
exists M > 0 such that |f(x)| < M a. e.

e, p({xe X |f(x)]>M})=0.

We note by
LX) ={f: X =R, fmeasurable such that IM > 0:|f(z)] < M a.e.on X} .

We also note, || f| ;e = ||f||l, = supzexess|f(x)] =inf{M :|f(x)] < Ma.e.on X}.

Lemma 1.1. Let f € L (X, M, u), so
|f@)] <[l a e on X,

so that || f||., = inf{M : |f(z)| < M a. e.}. In other words, || f|| . is an attained bound.

Remark 1.3. With the above notation, [|f|l,, = [Ifll, = (/x |f(x)] d,u(x))% Holder’s and
Minkowski’s inequalities can be written as follows

1 -glly < 171, [lgll,»  Holder’s inequality.

1f+gll, < IfIl, + llgll,, Minkowski’s inequality.

©2022, FERAHTIA Nassim Integral transformations in L spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON £ AND L* 10

Corollary 1.1. Let p € [1,+00|, then LP (X, M, 1) is a vector space over R and the mapping

Il L7 =Ry
fo—=lfl,

1S a semi-norm.

Proof. 1) L? is a vector space over R
a)VfeLr,Nge Ll = (f+g) € LP
Let f € £P and g € £LP. Then, according to Minkowski’s inequality, we have

1f+gll, < A1, + Nlgll, (1.2)

Since f € LP & || f||, <ocand g € L7 & | g||, < oo.
So, < f+gll, < I, + llgll, < +oe.
ie,(f+yg) Lt

b)VA e R, Vf € LP = (\f) € LP. We have

i, = (/. |Af<x>\pdu<x>>‘l°
NI

< 0oQ.

So, (A\f) € LP.
i.e., LP is a vector space on R.

2) [|f|l,, is a semi-norm, because

a) [ fll, =0

b) IS, = [ALIAIL,

O If+gll, <IN, + llgll,, Minkowski inequality.
d) We have

r=o = sl = [ 1oraute))’

= 0

and we also have

7, =0 = ([ v@raw) o

= f=0a.e onX.

©2022, FERAHTIA Nassim Integral transformations in L spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON £ AND L* 11

Hence the application f > || f||, is a semi-norm.
]

This result suggests decomposing the space L? into equivalence classes in the following way:
we say that two functions f and g belonging to £? are equivalent if || f — g[|, =0,
i.e., f and g are almost everywhere equal.

1.2.2 the space L” (X, M, u)
Let us consider the equivalence relation on £ (X, M, ;1) defined by
fRge f=gae e, |f—gl,=0.

We denote by [f] the equivalence class of f for this notation

[f] = {9€L:gRf}
= {gell:f=ga.e}

Definition 1.5. Let p € [1, +00]. We note L? (X, M, ;1) the quotient L? (X, M, 1) by the equiva-
lence relation R

Lr = A{[f], feL}
— [7/R.

1f we put |[f]],, = ||/, . we obtain

1A, =0 < [fl,=0
& f=0a.e.

We associate LP(X) with the following two operations

4 LP(X) x LP(X) = LP(X) and e:Rx LP(X) = LP(X)

defined by: [f] + [g| = [f +g] and VYA eR;X[f] =[\f],
We obtain a new vector space (L?(X), +, ) over the field R.

Remark 1.4. 1) We consider the elements of L?(.X) (the set of equivalence classes) as ordinary

functions, and we write f instead of [f].

©2022, FERAHTIA Nassim Integral transformations in L spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON £ AND L* 12

2) The mapping

I, - LP(X) — Ry

£ = ([ )

is a norm on L”(X).

Theorem 1.4. (Riesz-Fisher Theorem) The Lebesgue space LP (X, M, u) is a Banach space (a complete
normed vector space) for every p € [1, +o0|, with the norm

1 <p < oo, we have ||f|, = (/ ]f(:r;)|pdu(x)> , p = 400 we have || f||. = supzexess|f(z)].
X

Proof. See [3]. O

Convergence in L”((X, M, 1) Let (f,)n>0 be a sequence of functions in L?, and let f € LP. We
say that the sequence (f,,),>o converges to f in L” and we write f, Botif

limy, 1o ||fn - pr =0.

Exercise 1.1. Let p,q € [1,+oo] with ; + . = 1l and let f € L?([0, +o0) and g € L%([0, +-o),
calculate

. I
lzmTHJroof/ f(z)g(z)dx
0
Solution We have

T

| (2)g(x)| dx

“+o00

| (x)g ()| d.

[ s

IN

J
J

According to Holder’s inequality, we have

T +o0 % +00 3
|t < ( [ dx) ( | o) dx)
< 1F1L gl
So we have
1] /7 1
7| f@atas| < £ 161, lol,
i.e.,

T
limT_>+oo%/0 f(z)g(z)dz = 0.

©2022, FERAHTIA Nassim Integral transformations in L spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON £ AND L* 13

Corollary 1.2. The space L*(X, M, ) is a Hilbert space, equipped with the scalar product

< fig>= /X f(@)g(x)du(z),

where f,g: X — Rand f,g € L*(X, M, ).

Cauchy-Schwarz inequality:
Holder’s inequality in the case p = 2, gives the Cauchy-Schwartz inequality. We have

1 -glly < A fll2 Mgl

[ 5@ dua (/\f!du)</!9\du>,

(< frg > < flly - llgll; -

so we have

ie.,

Remark 1.5. For p # 2, the space L?(X, M, ;1) is not a Hilbert space.

Theorem 1.5. 1) Let (X, M, ) be a finite measure space (i.e., i(X) < +o0) and let p,q € [1,+0o0]
with 1 < q < p. Then we have
LP(X) C LY(X).

2)If 1 < py < po, we have
AN el el

Proof. 1) Assume that 1 < ¢ < p (since the case ¢ = p is trivial).
Weputr="2> land 7’ such that 2 + & = 1.

Let f € L?, so we have
Jaseran = [ irran
X X

< +o00,

ie, (f)1elL
And

/X 1 du = u(X)

ie,leL".

©2022, FERAHTIA Nassim Integral transformations in L spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON £ AND L* 14

Holder’s inequality applied to (f)? and 1, we obtain

1
7

[ <aan < (/X\f\qrdu)i</x!1|wdu)r

< ([ 1P .
Which implies that
LFIE < A1 (X)) 7,
so we have
1£1l, < A1 (u(X))e >,
ie.,

LP(X) C LY(X).
2) We show that if, p; < p, we have (Pt C (P2
Let z = (2,)n>0 € "' & Z |z, [Pt < 00

n=0

i.e., the series is absolutely convergent = the series is convergent.
So according to the necessary condition for the convergence of a series, we have

limp 100ty =0 Ve > 0;3dng € N:Vn > ng; |z,| <e=1.
We have

p1<p2 = |z, <|z.J", ¥Yn > ng

oo o0
- Z |xn|p2 < Z ’xn|p1

n=no n=ng

oo
= Z |z, |7 < 00,
n=0

ie,r = (xn>n20 € (P2,
For the first inclusion, it is enough to replace the pair (p;, p») with (1, py). O

Example 1.1. Let

f:(R,BR),N) — (R,B(R),\)

v f(“:):1+1|x|

, Alis the Lebesgue measure.

1) Show that f € L*(R) and that f ¢ L'(R).
2) What can we deduce?

©2022, FERAHTIA Nassim Integral transformations in L spaces



1.3. DENSITY THEOREMS 15

Solution We have that f is continuous on R = f is measurable.

9 1
der = —d
/R|f($)| ‘ /Rl%—Z\x]—i—a:Z x

1
/ 2d93=7r
r1+x

moreover,

IN

So, f € L*(R).
But,

Juwie = [

+o0 1
- 2/0 14+=x
So, f ¢ LY(R).

2) We deduce that L?(R) ¢ L'(R), because A(R) = +oc.

dr = 400

Theorem 1.6. (Extension of the Dominated Convergence Theorem (DCT) of Lebesgue)
Let p € [1,4+00[, (f1)n>0 a sequence of elements of LP and g : X — R an element of L such that

(1) limp— 100 fu(z) = f(2) a. e. with respect to p,
(ii) |fn(x)| < g(x) a. e. with respect to pu.
Then, f € L? and limy, 00 || fo — fIl, =0

Corollary 1.3. Let ( f,)n>0 be a sequence of elements in LP such that

> Nl < 4o
n=0

Then the series fn ) is absolutely convergent almost everywhere (a. e.) with respect to . More-
Y 8 Y p
n=0

over, the function f(x Z fn(x) defined almost everywhere with respect to yu belongs to LP and

limp, oo ||ZZ=0 fr— fH = O

1.3 Density theorems

We will establish that certain sets of particularly simple functions are dense in the L? spaces.

©2022, FERAHTIA Nassim Integral transformations in L spaces



1.3. DENSITY THEOREMS 16

Definition 1.6. Let (£, ||-||) be a normed space and Ej a subspace of E, We say that £, is dense
in F, if, for every f € E and every ¢ > 0 there exists an element f, € E, such that || f — fo|| < e.

Theorem 1.7. Let (X, M, u) be a measure space. The set E of step functions defined on this space, such
that

(VfeE);, n({zeX: f(x)#0}) <o,

is dense in LP(X), for 1 < p < oc.

Proof. The definition of the set I/ implies that £ C L”. Let f be a positive function in L? and
let (e,)n>0 be an increasing sequence of positive step functions converging to f. For every n
we have 0 < e, < f which implies that ¢, € L?, and consequently, e,, € E. Furthermore, the
inequality |f — e,|” < f? allows us to apply Lebesgue’s Dominated Convergence Theorem. It
follows that

limy oo || f — enll, = 0.

[ belongs to the closure of E. Since any real (or complex) function can be written as a linear
combination of two (or four) positive functions, we deduce that L? coincides with the closure
of I/, or equivalently that, /' is dense in L”. O

e We now present some results concerning density in the space L?, in the case where X = R

and 1 is the Lebesgue measure \.

Definition 1.7. Let f : R — R be a continuous function. The support of f is defined as the
closure of the open set {z € R: f(z) # 0}, ie.,

supp f ={z € R: f(z) # 0}.

Corollary 1.4. The vector space C?(R) of continuous functions with compact support on R is dense in
L? for every p € [1,40o0.

Example 1.2. The function
o1+ ,lx] <1
0 ,lz|>1
belongs to the space C?(R), because the function is continuous on R, and its support is
supp ¢ = [—1,1].
Corollary 1.5. The vector space C%(R) of functions of class C* with bounded support on R is dense in
LP forall p € [1, +o0.

Remarks 1.2. 1) k being arbitrary, note that in particular the space of indefinitely differentiable
functions with bounded support on R (i.e., the space of test functions, denoted D(R)) is dense

©2022, FERAHTIA Nassim Integral transformations in L spaces



1.4. SOME PROPERTIES OF THE SPACE L”(X) 17

in L? forall p € [1,400].
2) The results we obtained are only valid for 1 < p < oo. Thus, for example the constant
function f(z) = 1 which belongs to L> does not belong to the closure of C?(R).

1.4 Some properties of the space L/(X)

The table below presents some properties of the space L? (Reflexivity, Separability, Dual of L?).

The space LP(X) | Reflexive | Separable Dual space
LP,1<p< o Yes Yes Lq,with]ljjté:l
L No Yes L>
L™ No No strictly contains L'

Exercise 1.2. 1) Let (X, M, i) be a measured space, and let f and g be two functions belonging
respectively to L”(X) and L?(X) where p and ¢ are positive. Show that if we put Il) + % =1, then
we have

frgeL"(X) and | fgll, < IfIl, llgll, -

2) Now let p, ¢ €]1, +o0[ such that pg > p + ¢, suppose that (f,)n>0 € L? and (g )n>0 € L? such
that
fnz;f and gngg.

Find the appropriate space such that the sequence ( f,,g,,)»>0 converges in that space?

Solution 1) We have
1l = /X I Lol di (13)

Wehave: S+ . =1=¢+71=1

According to Holder’s iTneqlrlality, we have

@ < g7 = /X I lal di
< /X (1717 s ( /X (o) Edu)

< If15 llgllg

ie.,
1fgll, < ILFI1, gl -

We have f € L? < [ is measurable and || f||, < 0o, g € L? & g is measurable and ||g||, < oo, s0
(f - g) is measurable and || fg||, < oo, which implies that f - g € L"(X).
2) We have

fngn_fg:(fn_f)(gn_g)+(fn_f)g+f(gn_g)-

©2022, FERAHTIA Nassim Integral transformations in L spaces



1.4. SOME PROPERTIES OF THE SPACE L”(X) 18

According to Minkowski’s inequality, we have

[fngn = Fall, < N(fu = ) gn = D, + 10 = Dyl + 11 (gn = 91, -

According to Holder’s inequality, we have

Then we have
limnaJroo angn - ngr = 07

which implies that f,,g, L fgforr = ]%qq'

©2022, FERAHTIA Nassim Integral transformations in L spaces



CHAPTER 2

FOURIER TRANSFORM

U n analysis, the Fourier transform is an extension, for non-periodic functions, of the Fourier
series expansion of periodic functions. The Fourier transform associates, to an integrable
function defined on R and taking real or complex values, another function on R called the
Fourier transform, whose independent variable can be interpreted in physics as frequency or
angular frequency.

The Fourier transform represents a function by the spectral density from which it originates, as
an average of trigonometric functions of all frequencies. Measure theory as well as distribution
theory provide rigorous foundations for the definition of the Fourier transform in its full gen-
erality; it plays a fundamental role in harmonic analysis. When a function represents a physical
phenomenon, such as the state of an electromagnetic field or an acoustic field at a point, it is
called a signal, and its Fourier transform is called its spectrum.

In this chapter, we will study the Fourier transform of summable and square-integrable func-
tions, along with some properties and applications for solving integral equations and partial
differential equations.

2.1 Definitions and Notations

We denote by L!(R), the set of measurable functions defined from R to R, such that

/R\f(x)\dx < 400

19



2.1. DEFINITIONS AND NOTATIONS 20

Examples 2.1. 1) The function f(z) = 175 belongs to L'(R), because f is measurable and

1
/R]f(x)]d:v = /Rl—i-IQ dx
N
T iy T

2) The function ¢ from R to R defined by ¢(z) = = does not belong to L'(R). In general, except
in the case of the zero function, polynomial functions do not belong to L*(R).

Definition 2.1. Let f € L'(R). The Fourier transform of f is the complex-valued function of the
real variable £ defined by

MG /R€_2“’”'5f(x)dx, ¢eR.

This integral is well-defined because |e=>™*¢ f(z)| = | f(z)| and f € L'(R).

We will symbolically write, f(&) = F(f(x))(§).

Proposition 2.1. If f € L'(R), then [ is bounded and continuous, f(£) tends to 0 as |¢| — +oo, and

17l < s
Proof. We have

F&) = /Re_2m'5f(x)dx, ¢ eR.

The function under the integral sign is continuous for almost every € R and measurable for

every £ € R. Moreover, we have
e (@)] = f@)], vE € R.

The second term belongs to L'(R), and by the continuity theorem for functions defined by

integrals, the function f is continuous. Moreover, we have

Fo| < [lr@la
= |/l Ve R

ie.,

(€)

SUP¢crESS

£l
+00.

)
8
Il

o~ ’

IN

A\

This shows that fis bounded.

~

e We now show that limj¢|— 40 f(§) = 0.
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2.1. DEFINITIONS AND NOTATIONS 21

It is known that the space of functions with bounded support on R is dense in L'(R), i.e.,

Vf e LY(R), 3(pn)n>0 a sequence of functions with bounded support such that

Lt .
Pn — f ~ lzmn—H-oo ngn - f”l = 0.

Then we have, p(z) = Z O X [ap_1,0] (z),
k=1

which implies that

26 = / (3 Xyl (2))e 277

k=1
n g )
= e[ e
k=1 Fe—1

noo.
— E —(6 2miay, e 2Trz£ak,1>7

so we have

If [£] = o0, 0ona |p(€)] — 0, so

Which implies that lim¢— 4 ‘f({’)’ =0,
ie.,

-~

limie| 100 f (€) = 0.

Example 2.1. Calculate the Fourier transform of the rectangular function:

L, Jal <
m(x) =

= D=

0, |z| >
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2.1. DEFINITIONS AND NOTATIONS 22

Solution We have

1
2
—1 ) ,
— —mi§ _ mi§
2m’g< ™)
B 1 em’f - efm‘f)
T wé 21 ’
SO,
1 0 _ —i0
(&) = Sln(ﬂg), car sin(f) = ‘ ‘ , avec 0 = €.

21

2.1.1 Particular case 1: if f is an even function

We know that ¥ = cos(6) + isin(6), so the Fourier integral can be written as

F(f(x))(€) = /_+oo(cos(27rx§) — isin(2rxf)) f(x)dz.

Now, the functions = +— f(x)cos(2rz{) and z — f(z)sin(2rx€) are even and odd functions,

respectively. Therefore,

“+o00

/Rf(:c) cos(2mx)dr = 2 i f(z)cos(2mrzé)dr and /Rf(:c) sin(2rz€)dx = 0.

Hence, if f is even, F(f(x))(¢) is a real number, and

+oo

F(f(x)(€) =2 (x) cos(2mw€)d.

0

2.1.2 Particular case 2: if f is an odd function

In the same way, we can show that if f is odd, then F(f(x))(¢) is a purely imaginary number,

and we have
+o00

F(f(@)(€) = -2 (x) sin(2rx€)du.

0
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2.2. INVERSE FOURIER TRANSFORM 23

2.2 Inverse Fourier Transform

~

We can obtain f(z) from f({) using the inverse transform (also called the Fourier inversion

formula):

fla) = FROE)
= [ e

More generally, if f is not continuous at xz,, we have

/_—i-oo eQ’rmffA'(f)dg _ f(zo+0) 72L f(wg — 0)7

o0

where f(zo+ 0) and f(zo — 0) are the right-hand and left-hand limits of f(x).

1, |[z|<a
Exercise 2.1. 1) Find the Fourier transform of f(z) = o
0, |z| >a
2) Using the inverse Fourier transform, calculate the integral [ _Jr;o Cos(zmé);in@mf) dg.
3) Deduce the value of the integral [, #2%) .
Solution We have
for = [ pays
R
— / e—?m’:{;-&dm
_ —1 —2miag 2mial
o omi (e ¢ )
1 627ria§ _ G—Qﬂiaf
B w_g( 2i
S0/ i0 0
~ in(2 9 o —i
f(¢) = M, because sin(f) = i , with 6 = 2maé.

w& 21

2) According to the Fourier inversion formula, we have

/R )
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2.3. PROPERTIES OF THE FOURIER TRANSFORM 24

which implies that
L, |z| <a
/(cos(Qm:f) + isin(27r:cf))f(f)df =933 lzl=a
R
0, |z| >a
so we have
1, |z|<a
/cos(27rx§) sin(27ra§)d£+z./ sin(2mz§) sin(?wag)dé _ %’ 2| = a (2.1)
- w€ R €
0, |z| >a

Now, the function £ — w is an odd function, so the relation (2.1) becomes

T, x| <a
cos(2mx€) sin(2mwaf)
=15 i =a
R £
0, |z| >a

3) For z = 0 and a = 5-, we have

sin(§) . 0 sin(€) B
/R—§ d£—7T2>2/0 € d¢=m

ie.,

T sin(€) T
/0 (e = 7,

2.3 Properties of the Fourier transform

1) Linearity Let f, g € L'(R) and o, 8 € RV C, then

-~

Flaf(e)+ Pg(x))(E) = af(§) + £g(E).

Proof. We have

Flaf() + Bg())(E) = / e (o f () + By (x))da
= a/Re2””'£f(:c)d:c—|—B/Re2””'5g(sc)dm

~

= af(§)+ Py
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2.3. PROPERTIES OF THE FOURIER TRANSFORM 25

[
2) Translation Let f € L'(R) and a € R, then
F(raf)(€) = 27 (),
where (7,f)(z) = f(x — a).
Proof. We have
F(f(x—a))(€) = / e 2 f(x — a)dx, weputy =2 —a
R
= [ et g)ay
R
—2miag —2miyé d
‘ ] e~ f(y)dy
= o)
[

3) Change of scale Let f € L'(R) and A\ € R*, then

F(af)&) = 77/(3),

where (h)f)(z) = f(A\z).

Proof. We have

F(haf)(§) = / e~ 2% f(\x)dx, There are two cases
R

a) A > 0, we put Az = y & dy = A\dz, so we have

F(fO@)(E) = / e ) 2

R

e f(y)dy

Sl = >
]

=)
>
~—
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2.3. PROPERTIES OF THE FOURIER TRANSFORM 26

b) A < 0,so we have \z = y < dy = \dz

F(FO)(E) = / vk ()Y

- _71 _m e f(y)dy
—1¢
Tf(x)
_ 18
— ),
so we have o
(70 = /)
U]
4) Modulation Let f € L'(R) and & € R, then
F(em7 f(@))(€) = f(€ — &)-
Proof. We have
F<62m’§0:pf<x))(£) /]R 6727”23 €. 271'150:1:]('( )
—27” (&~ Eo)étf
/R
= f(§— &)
OJ

Remark 2.1. If f € LY(R), then lim,_, o f(z) = lim,, o f(z) = 0.

Proposition 2.2. Let f € L'(R), and suppose that f is differentiable and ' € L*(R), then

~

F(f'(2))(§) = (2mi€) f(£)-

Moreover, if f has derivatives up to order n that all belong to L'(R), then

~

F(f(x))(€) = (2mi€)" F(€).
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Proof. We have

F('@)E) = / ¥ f (0) da

— e ()] 4 (2mic) / T 1 —

-~

= 0+ (27mi€) f(€), because e 2™ f(z) € L*(R).

e We can show by recurrence that

~

F(FM (@)(€) = (2mi)" f(€)-

Proposition 2.3. Let f € L'(R). If zf(z) € L'(R), then f is differentiable and we have

Sf(S) F(=2mix f(2))(),

if further, 2" f(x) € L*(R) then

d™ ~ . \n
g5 ©) = F(=2mia) F () (©).

SGEP / @)

Since |—2mix f(z)e ™| = 27 \a:f(x)| and by assumption z f(z) € L'(R), then according to the

derivation theorem under the integral sign,

Proof. We have

156 = / jg “2mieS £ (1) do

— /R—Qﬂixe_%ixff(z)dz
= F(=2mizf(2))(€).

e More Generally, if 2" f(z) € L*(R) we can show by recurrence that

d™ . \n
aen /(&) = F((=2mix)” f(@))(&).
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2.4. CONVOLUTION PRODUCT 28

24 Convolution product

Let f, g € L'(R). Then the convolution (f x g) € L'(R) and we have

(f % g)(x) = / F(B)gla — Byt

The Fourier transform of the convolution product is

-~

F((f x9)(@))(€) = (&) - (&)

We can also show that

Proof. We have
F(f*g)(@)(€) = / 28 f « g) (x)de
+o0o +oo
:/_ e[ 0t~ ey,

By applying Fubini’s Theorem, we obtain

+oo +oo too oo
/ e[ f(t)g(x —t)dt)dz = F()( / e " eg(x — t)dx)dt.

Weputy =z —t & dy = dz, then

F(rroan© = [
= [ Temn [ e

400
= e 2T f(t)di / e 2 g (y)dy

+oo
£0)( / e T8 () dy ) i
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2.5 Parseval-Plancherel formula

We have the following relation established by Parseval for Fourier series and generalized by
Plancherel (1910) to Fourier transforms
“+o0o oo
f( )g(x)da = f(©)g(&)de.

- —00

An important special case if f = g, we have

ie.,

Proof. We have

Exercise 2.2. Consider the functions defined on R by

1 1 T
_— = —— h = ——
1+ a2 9(@) 2 —2r+ 2%’ (z) (1+22)%

fx) =

Knowing that f({ ) = e~ 2"l determine g(¢) and /ﬁ(f ).

SolutlonWehave£ e = 9(2) = Gy ey 9(2) = (nf) (@), 50§(E) = F((r ) (@))(©)

) =
= g(&) = e W - f(¢)

ie.,
§(§) — 672m'§ﬂ_6727r\£|.
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e We have - (175:) = gy = () = 5 f'(x), then

1

h€) = F(5 @)

1

- SFES@)E

= i) F©

= —imlge el
Proposition 2.4. Let f € L'(R), then we have
F(f@)©) = f(=€), where f'(x) = f(—x).

Proof. We have

F(f (@) = / e f(—x)de, weputy= -z & dy=—dz
R

= = [ ey
+oo
+oo
= =20 f(y)dy
= f(-¢)

In other words, F(F(f)) = f" a. e.

2.6 Usual examples

Let a > 0 be fixed, ¢ and d be two real numbers such that ¢ < d.

Direct calculation : Applying the definition of the Fourier transform we have for all £ € R,

d— ¢, g =0
sin(n(d—c)e) ,—in(c+d)é | ¢ £ ()

w§
in particular F(x(_s 2)(2))(§) = 5=

(1) F(Xfea(®))(§) = {

(i) F(e " Xjo400((2))(§) = a—&-;ﬂ'i&'
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(i) F((1— 2)x g 5(2))(6) = 27555
(iv) F(ex)-o0(1))(€) = bz
(v) Flem)(€) = 2.

(vi) F(sign(z)e=)(€) = ;44—2

(vii) F(e \/_e a .
(vii) f(m)(ﬁ) -

(ix) f(az+mz)(f) = %6’2’”"5‘-

Theorem 2.1. Let f € L'(R) be such that f(£) =0, then f =0 a. e.

2.7 Resolution of integral equations by the Fourier transform

A Fredholm integral equation of the second kind is an equation of the form

o) [k ely = 1), 22)

o0

where f and k are given functions, k(z,y) is called the kernel of the integral, and ¢(x) is the
unknown function. To solve it, the kernel must depend on the difference of the arguments, i.e.,
the equation (2.2) becomes

o)~ [ ke - oty = @), 23)

which implies that
p(x) = (kxp)(w) = f(2).

By applying the Fourier transform, we obtain

B(&) ~k(©) - 8(©) = f(©), (2.4)
with 3(€), k(€), f(€) ¢) being the Fourier transforms of ¢(z), k(z), f(z) respectively. Under the
condition 1 — k(¢) # 0, the equation becomes

~

o
— )
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Using the Fourier inversion formula, we obtain

~

) = oe e27rix§ f(é)
o= [ il

Exercise 2.3. Solve the following integral equation
o(x) — )\/ el tpt)dt = el N eRet A >0,
R

knowing that F(e~ll)(¢) =

__<4a
a?+4m2g2°

Solution We put f(z) = %I, so the equation (2.5) becomes

p(x) = A *p)(x) = f(x).

By applying the Fourier transform, we obtain

which implies that
(1= Xf(©)2(©) = J(©).
so we have J?(g) ,
=g @ o7y
ie.,
B(E) =

(12N +dn2e®
o If (1 —2X\) <0< A > 4, the function

2
(1—2)\) + 4n2e%

E—>

(2.5)

is not continuous on R, therefore cannot be the Fourier transform of an integrable function, so

the equation (2.5) has no solution.

o If (1 - 2X) > 0 & A €]0, 3, the function { — =55 is continuous on R, so we have
- 2
A8 = ooy
o 2T~ 2\
VI =24 (VI = 2X)2 + Ar2g?
1
— F —V1-2)|z| .
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i.e.,

1
F = F(————— . e~ 1-2\|z| ]
(P)E) = Fl s -/ 2))
Since the Fourier transform is injective on L'(R), we have
1
- - f\/172)\|x|.
plr) == c

2.8 Extension of the Fourier Transform to Square-Integrable

Functions

The definition of the Fourier transform given by the formula [, e "¢ f(z)dx is not directly
applicable to an arbitrary function in L?*(R). However, this definition is valid when f € L'(R) N
L*(R), and in that case, one can show that f also belongs to L*(R), and || f|, = HfAH2 This
isometry from L'(R) N L*(R) into L*(R) extends to an isometry from L*(R) onto L*(R), and
this extension allows one to define the Fourier transform ( also called the Fourier-Plancherel
transform) for any function f of L*(R).

Theorem 2.2. (Plancherel’s theorem) Let f € L'(R) N L2(R). Then f € L2(R) and we have

11 = |7

The extension of the Fourier transform to L*(R) is carried out using the density of (L'(R) N
L*(R), ||-]l,) in L*(R), and the completion of L*(R). This is an application of the following result
from topology:

Lemma 2.1. Let E and F be normed vector spaces, with F' complete, and let G be a dense subspace of
E. If wis a continuous linear map from G into F, then there exists a unique continuous linear extension
u from E into F', and the norm of u is equal to the norm of w.

According to Plancherel’s theorem (Theorem F is an isometry from L'(R) N L*(R) into
L*(R). By applying the above lemma with £ = F = L*(R) and G = L'(R) N L*(R), we obtain
the following theorem

Theorem 2.3. (Plancherel-Riesz Theorem) There exists a unique automorphism, also denoted by F,
of L*(R) that canonically extends the isometry.

L'R)NL*R) — L*(R)

fo=f

Moreover, for every (f, g) € L*(R) x L*(R), we have
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L F(F ) =FHF) =Ffpp

2. [, f(@)g(x)dx = fR )g(€)de  Formule de Parseval-Plancherel.

3. limasios oa = F(f)lly =0 o0itpa(§) = Jpe ™ f(2)x(-a,1)(x)dz.

4 limacspoo|[0a = fll; =0 ot Ya() = [ @™ F(E)xi-a.(€)de.
Exercise 2.4. We consider the functions defined on R by

flz) = sin;;rx) and g(z) = sin(rz)e ™"

1) Calculate f(¢) and deduce the value of the integral [roo ()2 gy
2) Calculate §(¢), Recall that F(rze ™) (€) = —inEe ™.

Solution 1) We know from Example 2.1|that the Fourier transform of the gate function = (z) is

. sin(rg)
ﬂ-(é) - 7_(_5 .
So we have
F(@(x))(§) = m(=¢),
which implies that '
}_(sm(wx) )(§) =7(€) because 7 is even.

T™r

e According to the Parseval-Plancherel formula, we have

[ e — [ iera

™

2) We have

7T£E2

g(x) = sin(mx)e”
_ sin(mx) g
nr

= f(z) - h(z), withh(z)=mze ™.
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So we have

<)
i
S~—
I
=
0
=
5
™~
S~—

= —_(eTTEHTET _ o),

ie.,
§(8) = —ie ™ i sh(ng).
Theorem 2.4. 1. If (f,g9) € L'(R) x L*(R), so F(f xg) = F(f)F(qg).

2. I (f,g) € LA(R) x L2(R), 50 F(f - 9) = F(f) « F(g).

2.9 Fourier transform in L*(R) of a derivative

Theorem 2.5. Let f € L*(R)
o If f is piecewise continuous of class C* and such that f' € L*(R), then for all £ € R,

F(f'(2))(&) = (2mi€) f(£)-

e If moreover f is of class C™ piecewise where m € N* and such that the derivatives f*) up to order m

inclusive are square integrable, then for almost all £ € R and for all 1 < k < m, we have

F(fP (@) (€) = @mie)* f(£).

Exercise 2.5. Is the Fourier transform of the derivative applicable to the function f(z) =
X[_Ll] (.T).

Solution We have f'(z) = 0 p. p., so f/(£) = 0.

On the other hand, we have according to the usual example F(x[-1,11(2))(§) = sin(2n¢)

3

, SO

-~

(2i€) F(€) = 2isin(2r),

i.e.,

~

F1(€) # (2mi€) f(€), because
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f is not differentiable at points (1) and (—1).

2.10 Application to the resolution of partial differential equa-

tions

2.10.1 Heat equation

Let us consider a homogeneous (very thin) rod of infinite length, isolated from the external
environment. At time ¢ = 0, the temperature distribution along the rod is given by uy(z) =
u(0, z) for each point (x € R). We aim to determine its evolution u(t, z), knowing that it satisfies

the so-called heat equation.

C) % - % =0, (tvr) 6]07 TLOO[XR
u(0,7) = up(z), x€R

e We assume that uy € L'(R), and we look for a function u(t, z) € C*?(]0, +o00[xR).
e We assume that for fixed ¢t > 0, we have
dr < 400, /

/|utm

so that the functions z — u(t, z), v — 2(t,z), z — ‘327”;(25, x) have, for each fixed value of ¢ > 0,

tx dxr < 400,

83:2 )

a Fourier transform with respect to the spatlal variable z.

e Moreover, we assume that for ¢t > 0, we have

Jdu —2mix-§ _ 2 —2miz-§
e (t,x)e dr = at(/]R u(t, z)e dx).

We put for ¢ > 0 fixed
&) / 2Ty (4 2)d.
R

Applying the Fourier transform with respect to the space variable =, we obtain

ou  0%*u
F(E - @)(5) =0,
which implies that
ou 0%*u
]:(a)(f) - ]:(@)(5) =0,
so we have

/ o€ oy de — (amig)at, €) = 0,
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i.e.,

%ﬂ(t, €) +4n*u(t, &) = 0. (2.6)

Thus, V¢ € R fixed, u is the solution of the differential equation with respect to time ¢, therefore
Ut, &) = ce 4™,
Fort = 0= u(0,&) = ¢ = up(&), so the solution is
(t, &) = Tg(§)e ™.
The Fourier inversion formula gives

ult,z) = F M @o(&)e ™) (x)

12 1 z2 2¢2
= wup(x) * e a, carF e a = e 4mE
1 22
= Upg * e 4 )(x),

i.e.,

1 7(I—y)2
u(t,x):\/m/Re 7 ug(y)dy.

Exercise 2.6. Let f be the function defined on R by f(z) = ¢~™*’
1) Check that f is the solution to the differential equation

f(z) +2rxf(x) =0 (2.7)

~

2) By applying the Fourier transform to (2.7)), show that f(¢) is a solution to a first-order differ-
ential equation that we will determine.
3) Solve (2.7)) and determine f(f ), knowing that [, e ™ dy = 1.

Solution 1) We have

Flx)+2naf(z) = —2mwe ™ + 2ppe ™
= 0.

2) Applying the Fourier transform, we obtain

F(f'(x) + 2mx f(2))(€) = 0,
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which implies that

F(f'(x)(&) +2nF(zf(x))(€) =0, because F is linear

i.e.,
~ —-1d
(2mi€)f(€) + 2m(5 2 F€) =0,
then the equation becomes as follows
d ~ ~
@£ (§) + 27 f(§) =

3) We have %f(f) +2mEf(€) =0 = d%f(f) — —27¢ f(€), which implies that
GO — _orede = [ 4O = [ _onede = (1) = —xg?,

G) [G)
ie.,
J(©) =ce™.
For ¢ = 0, we have f(0) = cand f(0 = Jo f(
which implies that
c = / e ™ dy
R
i.e.,
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CHAPTER 3

LAPLACE TRANSFORM

O ne of the most efficient methods for solving certain differential equations is to use the
Laplace transform . The Laplace transform transforms functions f(x) into other functions
F(s). We write

f=L7U(F) or f(z)=LT(F(s)) ().

We will see later on which functions these transforms are defined. The essential property is
that, under certain conditions,

L(f'(x))(s) = s F(s).

Thus, differential equations become algebraic equations.

3.1 ('} Functions

The class of real functions (', is formed by causal functions, piecewise continuous, and of ex-
ponential order.
e A function is causal if it is zero for z < 0, f(z) =0ifz < 0.
o It continues piecewise if it only has points of discontinuity of the first kind (having a left limit
and a right limit).
e It is of exponential order if it is bounded by an exponential, i.e., if there exist real constants
M > 0 and « such that

|f(x)] < Me*™, Yz > x.

39
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e The usual functions sin(wz), 22, e” are not causal, one way to create causal functions is to use

the Heaviside function

1, >0
H(z) =
0, <0

For example the function f(x) = e” is not a causal function, but if we multiply it by H(x), we
have

flx) = e"H(x)
0, <0

3.2 Definition of Laplace transform

Definition 3.1. The Laplace transform of a function of (', is defined by

+oo
L(f(2))(s) = F(s) = / e f(2)d,

s is here a complex variable (frequency) and F(s) a complex function.

Remarks 3.1. 1) F(s) defined by an improper integral which does not always converge if f ¢
Cr.
2) If f is discontinuous at 0, the lower bound of the integral should be denoted 0.

Exercise 3.1. Calculate the Laplace transform of the following functions

e x>0 1, >0

0, <0 0, <0

Solution 1) Let F'(s) = L(f(z))(s), so

P = [ e

(2—a)z

limg_s 400 |e(2_s)x| = 1iMy i o€ =0ifa > 2, so
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1 —S)x o0
F(s) = E[e(Q s
1
= 0—-1
5—0-1
B 1
s —2
i.e., .
F(S):S_Q, Re(s) > 2

Lets =a+if = e % = e @ 7 50

limysio0 |75 = limy e = 0if @ > 0, sO

Gls) = L
= -
_1
ie.,
G(s)z%, Re(s) > 0

Theorem 3.1. Let f be a function defined on R and such that
(i) f(z) =0, Vz <0,
(ii) f is piecewise continuous on [0, 400,

(i1i) there exist constants M > 0 and r such that

Vo > xo; |f(z)] < Me™.

So, the Laplace transform of f exists for all Re(s) > r.
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Proof. We have
+oo xo +o00
/0 e f(r)dr = /0 e f(x)dr + / e f(x)dx.

o

The integral [ e~ f(x)dx exists because f is piecewise continuous. As for the other integral,
note that

e f(2)| = |7 ()]
= e |f(x)l
< Me (@7,

Now, the integral [,'* Me~(®=")dx converges because Re(s) = a > r. Therefore, by the com-
parison test for improper integrals, the integral f;:oo le=** f(z)| dz also converges, which implies
that fg:goo =" f(x)da exists. Consequently, the integral [, =" f(z)dx exists in the half-plane

{s € C: Re(s) >r}.

Exercise 3.2. Compute the Laplace transform of

Solution We have

Using integration by parts, we obtain

" n +oo
In — [__e—sx]a—oo 4+ = :L,n—l e 5Ty
s s Jo
—+00 xn
= g/ 2"t e 7 dy, car limxﬁﬂo(—?e_”) =0,sia>0avecs=a+1if,
0
ie.,
n
[n = Infl
S
By recurrence, we obtain
n n—1 1
I, =—" X ... x — - I,
S S
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and
+oo
Iy, = / e dx
0
1
= —,sia>0
s
So . .
]nzﬁxn_ X ...X —X =, Re(s)>0,
s S s s
ie.,
n!
F(S) = F, RQ(S) > O

3.3 Properties of the Laplace Transform

1) Linearity The Laplace transform is a linear operator. More precisely, for all o, 5 € C, and for

all functions f, g with respective abscissas of summability r, o, we have
Laf(x) + Bg(x))(s) = aF(s) + BG(s),
where F(s) = L(f(x))(s), G(s) = L(g(x))(s), and Re(s) > max(r, o).
Proof. Indeed, if the functions f and g admit Laplace transforms
+o0 +o0
LU =P = [ e fa)ds, Llg)s) =Gl = [ e ola)da,
0 0
then we have
+oo
Lof@)+ o)) = [ e af@)+ syta))ds

+o0 +oo
= a/o e f(x)dx + 6/0 e g(x)dx
= aF(s)+ BG(s).

o If the abscissas of summability of f and g are r and o respectively, then the domain of summa-
bility on which af + g is defined is {s € C : Re(s) > max(r,0)}. O

2) Translation If £(f(z))(s) = F(s) with Re(s) > r, then
L(taf)(s) =e *F(s), Re(s)>r.

Where (7. f)(z) = f(z — a).
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Proof. We put g(z) = {

We have

weputz —a=t&dt =

flzx—a), z>a

0, z<a

Llg(x)(s) = / e rg(a)da

a +o0
= / e *g(x)dx + / e *Tg(z)dx
0 a
+oo
= / e f(x — a)dx,

dzx, so

Llg@)(s) = e / et ()t
= e “F(s).

Exercise 3.3. Find the Laplace transform of

Solution We have f

0, <0
flx)=<X1, 0<z<a

2, T>a

H(z) + H(x — a), where is the Heaviside function, and let

(z) =
F(s) = L(f(x))(s), 50 F(s) = LIH(x))(s) + L(1H)(s),

i.e.,

3) Property If F'(s) = L(f(x))(s), then

Proof. We have

L(f(x)e*)(s)=F(s+«a), Re(s+a)>r

+o00o
C(f(x)eo)(s) = / e~ f(z)e o dz

+oo
= / e~ Or)T £ () dx
0
= F(s+a).
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[
4) Change of scale If L(f(x))(s) = F(s), then
LUFO)(s) = F(3), A >0
Proof. We have
+o0
L(f(Ax))(s) = / e f(Ax)dx, onposet=A\r & dt =Adx
= %/Om e N f(t)dt
1 s
= XF(X)'
[
4) Complex conjugate If L(f(x))(s) = F(s), then
L(f(x))(s) = F(5)
Proof. We have
LN = [ e T
+o0
= /0 e f(x)dx
= F(3)
[

Proposition 3.1. The Laplace transform of a locally integrable function f, is a holomorphic function in
the domain of summability {s € C : Re(s) > r} and we have the formula

Fin(s) = / (o) fa)e e = (1)L f (1)) s).

Exercise 3.4. Determine the Laplace transform of 2", using the previous proposition.

Solution We have

L(2" f(2))(s) = (=1)"F"(s), ici f(z) =1,

so we have
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Using the successive derivative of order n, we can demonstrate by recurrence that

(l)w __nt
S (—1)ngntl’

ie.,
n!
Sn—i—l )

L(z")(s) = Re(s) > 0.

3.4 Transform of the derivative

Theorem 3.2. If f' is piecewise continuous on all closed sets [0, xo] and if L(f(z))(s) =
there exist M > 0 and r such that | f(x)| < Me™, Vo > x, then

L(f'(x))(s) = sF(s) = f(07),  Re(s) >r.

Proof. We have

by integrating by parts we obtain

“+o0o
L)) = @l +s [ e
As lim,_, e " f(x) = 0, because

limy sy oo |e’”f(x)| = im0 “C|f(z)], s=a+if

< lz’mxﬁﬂo]\/[e(r’o‘)’” =0, with Re(s) >r.

So, [~ f ()5 = (0.
f(0%) representing the right limit of f(z) when z — 0.
Hence
L(f'(x))(s) = sF(s) = f(07), Re(s) >r.

Generalization If f” also satisfies the assumptions of the theorem, then we have

L(f"(x))(s) = sL(f'(x))(s) — f'(07)
= s(sF(s) = f(07)) — f(07),

F(s) and if
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hence

L(f"(x))(s) = s*F(s) — sf(07) = f'(07).

e We can demonstrate by recurrence that

L[ (@))(s) = 5"F(s) = " (07) = s"2f/(0F) — .. = sf72(07) = J70(0).
Special case If f(07) = f/(07) = ... = f®1(0F) = 0, we have

L(f®(@))(s) = s"F(s).

Remark 3.1. In general, if f(x) is discontinuous at points 1, s, ..., =,, then

n

L(f'(2))(s) = sF(s) = F(07) =Y e ™ (f(a}) = flxy)).

k=1

Proposition 3.2. If L(f(x))(s) = F(s), then

/ f(t)dt)( ) Re(s) > max(0,r).
Proof. Let g(z) = [; f(t)dt. From the previous result, we have

L(g'(x))(s) = sL(g(x))(s) —g(07)
= sL(g(x))(s),

Since ¢g(0) = 0, and ¢'(z) = f(x), it follows that L(g(x))(s) = L(f(x))(s). We then deduce that
sL(g(x))(s) = L(f(x))(s).

i.e.,

5(/; fans) = @)

3.5 Inverse Laplace transform

Let F'(s) be the Laplace transform of a function f(z). We call the inverse Laplace transform, or
the original of F'(s), the function f(z), and we denote f(z) = L™}(F(s))(x).
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Example 3.1. 1) L7 (%)(2) = zH (z).
2) L7Y(=2)(x) = cos(2x)H(z), because L(cos(ar))(s) =

5244

Tz

e It can be shown that if the functions f considered satisfy the properties stated at the beginning
of the chapter, i.e.,

e A causal function.

e Piecewise continuous on every closed interval [0, z).

¢ Of exponential order.

Then the original function f(z) of a given function F(s) is unique on any subset where it is
continuous.

The search for the original leads to the study of the properties of the mapping F(s) = f(x),

called the inverse Laplace transform.

3.6 Properties of the inverse Laplace transform

1) Linearity Since the inverse of a linear operator is also linear, we have

L7 (aF(s) + BG(s))(x) = aL™H(F(s))(x) + BLT(G(5))(x).

e In general, to find the original function corresponding to a rational function F(s) =
uses its partial fraction decomposition.

s+1

Exercise 3.5. Find the original of F'(s) = T

Solution The decomposition of F(s) is written as

s+ 1 _A B cs+d

s2(s?2 +4) 52+ s s2+4’

and the computationyields A = {, B=1,c=2,d = 7},
Hence,
Ll d Loy 2 Lo s T
Le. 1 1 1 1
flx) = <Z_L + 271 cos(2x) — 3 sin(2z))H ().

2) Original of F(as), a > 0 Let f(x) be the original of F'(s), i.e., f(z) = L™'(F(s))(z), we have
+oo
F(as) = / e f(x)dr, y=ar < dy=adx
0

1 [
_ ! / e i(Y)ay,
0 a

a
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hence,
Flas) = ~£(/(5)0)
= £CAEN0)
ie., )
L7 (F(as))(2) = =f(>)

F(s+a) = /+OO e~ T £ (1) da
0

hence,
L7HF (s +a))(z) = e f().

Example 3.2. 1) L7 (—2t2—)(x) = e cos(ax), x >0

(s+a)2+a?
2) Eil(m)(a:) = e “sin(ax), © >0
Exercise 3.6. Find the original of F'(s) = 5
Solution We can write
s B s
S24+s+1  (s+3)243
B S+ 3 1 1
(s+3)32+2 2(s+3)2+73
therefore, )
s+ 3 1 1
xr)=L"1 2 z)—=L7! ),
i.e.,
1 1 3
flz)=e2" cos(7x) — %e 2% sin(\/T_x), r>0

4) Original of F'(s) x G(s)

Theorem 3.3. If L7(F(s))(z) = f(x) and L7 (G(s))(z) = g(z), then

£ (F(s) x G(s))(x) = / " F(t)gla — ),
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the integral [ f(t)g(x — t)dt is called the convolution product of f by g and is denoted (f x g)(x)

e We easily verify that (f x g)(x) = (g * f)(x).

Exercise 3.7. Find the original of F'(s) = —52(51 =y

Solution Let f(z) = L7(F(s))(z), we have

L)) = et £ (@) =
hence
-1 1 _ -1 l 1 x
(m)@) = L (52 S+1)()
- / xte’(l”t)dt,
ie.,

3.7 Table of Some Common Functions

The table below gives some Laplace transforms of common functions.

flx) = L7H(F(s))(z) | F(s) = L{f(x))(s)
H(z) L Re(s)>0
e -, Re(s)>a
sin(ax) i, Re(s) >0
cos(ax) oz e(s) >0
% a>—1 Fg‘jj}), Re(s) >0
2", neN SZL%, Re(s) >0
f(az) LR()
e (2) F(s +a)
flzx —a)H(x — a) e F(s)

3.8 Application of the Laplace transform to differential equa-

tions

Let us consider the linear differential equation with constant coefficients

any ™ (2) + an_1y™V(x) 4 .+ agy(x) = f(2).
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Let £(y(z))(s) = Y(s). Then,
L(y'(x))(s) = sY(s) —y(0) et L(y"(x))(s) = s’Y(s) — sy(0) — ¥/ (0),
and more generally,
Ly (x))(s) = s"Y (s) = 5" 'y(0) — ... =y (0).

By applying the Laplace transform to the above differential equation, and using linearity, we
obtain
(ans8™ + Gp_18" t + ... +ag)Y(s) + ¢(s) = F(s),

where ¢(s) is a polynomial of degree at most (n — 1), involving the initial conditions
y(0),%(0), ...,y ~1(0). It follows that

Y(S) . F<8) - (b(S)

- _ 9
AnS™ + ap_18"" 1+ ...+ ag

and consequently, by applying the inverse Laplace transform,

Solution Let L(y(z))(s) = Y (s), so L(y'(z))(s) = sY(s) —y(0) = sY(s) — 1, L(y"(x))(s) =
s?Y (s) — sy(0) — y/(0) = s?Y (s) — s.
Applying the Laplace transform to the equation (3.1)), we obtain

L(y"(x))(s) = 2L(y'(x))(s) + L{y(x))(s) = L{(we")(5),

which implies that
1
s*Y (s) — s —2sY(s) + 2+ Y (s) = o1
ie., . . .
Yi(s) = —

=G GoEtaot

applying the inverse Laplace transform, we obtain
T 1 3
y(z) =e (Ex —x+1).
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3.9 Solving integral equations

The Laplace transform allows the study of a large number of integral equations.
e A Volterra integral equation of the second kind is an equation of the form

o) — / k(e t)p(t)d = g(x).

where g, k are known functions and ¢ an unknown function, the function % is the kernel of
this equation. We consider the case where the kernel depends only on the difference = — ¢, i.e.,
k(xz,t) = k(x — t) with k with support in R... Let F, G and K be the Laplace transforms of ¢, ¢
and k, respectively. Applying the Laplace transform to both sides of the above equation, we
obtain

Llp(@))(s) — £ ( / ke - t)so<t>dt) () = L{g(@))(s).

so we have

L(p(x))(s) = L((kxp)(x)) (s) = L(g(x))(s),

hence
F(s) = K(s)F(s) = G(s),
hence
F(s) = %, K(s) # 1.

The original p(x) of F(s) is the solution to the integral equation.

Exercise 3.9. Determine the solution to the following integral equation

o(x) — /Or sin(x — t)p(t)dt = 2°. (3.2)

Solution Let F'(s) = L(p(z))(s).
The equation is written in the form

o(x) —sin(z) *x p(x) = 2%, 2 >0.

Applying the Laplace transform to both sides, we have

1 2
F(S) o s2+1 (S) = Ea RB(S) > 07
ie., 5 5
F<S)_s_5 5, Re(s) >0
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By consequently

o(z) = L7 (F(s))(x) = 1—12:1:4 +a2

3.10 Solving partial differential equations

The Laplace transform method can be used to solve certain partial differential equations, as
shown in the following example

Example 3.3. Solve the following equation

du _ @ with
ot ox?

u(z,0) =sin(z), u(0,t) =0, u(mt) =0, 0<z <m, t>0.
Solution Let U(z, s) = L(u(z,t))(s) be the Laplace transform of u(z, t). We have

o)) = £ ), 63

We have £(24)(s) = f0+°° ef“%dt and since L(f'(z))(s) = sF(s) — f(0), then

ou

£<E

)(s) = sU(x,s) —u(z,0) = sU(x,s) — sin(z),

and

0%u ov ou

L) = LG, v ="

+o00
Y I
0

oz

+oo
= % e "t (z, t)dt
0
o [T 0u(z,t)
02 +oo
= W/ e Stu(z, t)dt
= Jo
_ 0%U(x,s)
B ox?

then the equation (3.3) becomes

0?U(z, s)
Ox?
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i.e.,
02U (z, s)
0x?

This is a second-order differential equation with constant coefficient, so the solution is

—sU(z,s) = —sin(x).

Uz, s) = yu(z) + yp(z).
The homogeneous equation is

' 02U (z, s)

(H): —

—sU(z,s) =0,

the characteristic equation is r? —s=0=r, = /s, rs = —/5, 80 we have

sin(x)

Y () = 16V + eV ¢p, ¢ € Rand y,(z) = 11s

I

then the general solution is

sin(x)
1+s

U(z,s) = c1eV + coe VI 4 , 1, o € R.
We have U(0,5) = ¢; + c; and U(, s) = ¢1eV*™ + ce~V*™, on the other hand we have

U(0,s) = [,"° e=u(0,t)dt = 0,

ie.,
C1+ Ccy = 0. (34)
And U(r,s) = fOJrOO e *tu(m, t)dt =0
i.e.,
1€V 4 cpe VI = 0. (3.5)

From equation (3.4) and equation (3.5), we obtain
Cl = Cy = 0.

Then the general solution is

sin(z)
1+s’
Applying the inverse Laplace transform, then we have

Ux,s) =

u(@,t) = L7(U(z,s))()

= (W
= e 'sin(z).
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Exercise 3.10. Given the Gamma function
+o0
[(z) = / t" e tdt, x> 0.
0

1) Show thatT'(z + 1) = 2I'(x) and I'(n + 1) = n!, n € N.
2) Calculate the Laplace transform of the function 2* H(x), where H(z) is the Heaviside function

and o > —1.
3) Deduce L(z"H(x))(s).
4) Calculate L(1/x)(s).
Solution 1) We have
+oo
Fxz+1) = / tY e dt
0 .
= [t*eI™ + x/ t"te~'dt, by part
0

= zal(x).

And

Fin+1) = nl'(n)
= n(n—1I'n—-1)
= n(n—1)x..x2x1xI(1),

and T'(1) = [ e 'dt = 1, which implies that T'(n + 1) = n! .
2) We have

“+oo
L(z*H(x))(s) = / e - x%x, weputsr =t & dt = sdx
0

oot dt
= [ et
0 5" s

1
= ['(a+1).
3) If « = n, we have
" I'(n+1)
L(z"H(z))(s) = T
n!
- 8n+1
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4) If o« = 5, we have
L(:+1)
LV = =2
o)
53
we have
1 400 1, )
F(§) = t ze 'dt, weputt = 2”& dt = 2zdy
0 -
= 2/ e “dx
0
NZS
- 9.M7
2
So Jr
m
£/ = 25
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