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Notations

• (e1, e2, ..., en) is the canonical basis in Rn.
• x · y = x1y1 + ...+ xnyn is the scalar product in Rn.
• For x ∈ Rn, |x| denotes the Euclidean norm in Rn.
• a. e. designates almost everywhere
• (f ? g)(x) =

∫
Rn f(x− y)g(y)dy is the product of the convolution of the functions f and g.

• If f : Rn −→ C, the support of f is denoted by supp f .
• D(Rn) is the space of functions C∞(Rn) with compact support, D′(Rn) is the dual space of
D(Rn), is also called the space of distributions on Rn.
• S(Rn) is the Schwartz space, consisting of rapidly decreasing C∞(Rn) functions on Rn, the
dual S ′(Rn) is the space of tempered distributions.
• If f ∈ L1(R), then its Fourier transform is:

F(f(x))(ξ) =

∫
R

exp(−2πix.ξ)f(x)dx

and its inverse Fourier transform is:

F−1(f̂(ξ))(x) =

∫
R

exp(2πix.ξ)f̂(ξ)dξ

• q is the conjugate exponent of p, 1
p

+ 1
q

= 1 where p ∈ [1,+∞].
• Let a ∈ Rn, τa is the translation operator defined by τaf(·) = f(· − a).
• Lp(Rn) is the space of measurable functions f on Rn such that

‖f‖Lp(Rn) = (

∫
Rn
|f(x)|pdx)

1
p <∞.

• `q is the space of sequences (ak)k such that ‖(ak)‖`q = (
∑∞

k=0 |ak|q)
1
q <∞.

• CL denotes the class of causal functions that are piecewise continuous and of exponential
order.
• F (s) denotes the Laplace transform of the function f .
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CHAPTER 1

Lp SPACES

L ebesgue spaces are Banach spaces, i.e., complete normed vector spaces, whose definition
and study require the theory of integration.

In this entire chapter, we fix once and for all a measure space. (X,M, µ).

1.1 Convex functions and inequalities

Definition 1.1. A function f defined on the open interval ]a, b[ and taking values in R is said to
be convex if, For all x, y and λ such that

a < x < b , a < y < b and 0 ≤ λ ≤ 1,

we have
f ((1− λ)x+ λy) ≤ (1− λ) f(x) + λf(y).

If −f is convex, f is called concave.

Remarks 1.1. 1) If f is convex on ]a, b[ and if x1, x2 and x3 are such that a < x1 < x2 < x3 < b,
then we have

f(x2)− f(x1)

x2 − x1

≤ f(x3)− f(x2)

x3 − x2

2) If f is convex, and if f ′ exists on ]a, b[ it follows that for x1 and x2 such that a < x1 < x2 < b,
we have

f ′(x1) ≤ f ′(x2).

3) If f is convex, and if f ′′ exists on ]a, b[ then we have

f ′′(x) ≥ 0,

for any x such that a < x < b.

5



1.1. CONVEX FUNCTIONS AND INEQUALITIES 6

Definition 1.2. Let p and q be two real numbers belonging to [1,+∞]. We say that p and q are
conjugate exponents if

1

p
+

1

q
= 1.

This definition implies 1 < p < ∞ and 1 < q < ∞. Since p = 1 we have q = +∞, we say that 1

and (+∞) are conjugate exponents.

Theorem 1.1. ( Young’s Inequality ) Let a and b two positive real numbers, then we have

ab ≤ 1

p
ap +

1

q
bq,

with p, q ∈]1,+∞[ and p, q are conjugate exponents.

Proof. The function lnx is concave on ]0,+∞[

i.e., ln (λ1x1 + λ2x2) ≥ λ1 ln (x1) + λ2 ln (x2) , λ1 + λ2 = 1.

So, for λ1 = 1
p
, λ2 = 1

q
we have λ1 + λ2 = 1

p
+ 1

q
= 1.

we put x1 = ap ≥ 0, x2 = bq ≥ 0, then we have

ln

(
1

p
ap +

1

q
bq
)
≥ 1

p
ln (ap) +

1

q
ln (bq)

≥ ln (ap)
1
p + ln (bq)

1
q

≥ ln (ap)
1
p (bq)

1
q

= ln (ab)

i.e.,
ab ≤ 1

p
ap +

1

q
bq.

Theorem 1.2. ( Hölder’s inequality ) Let (X,M, µ) be a measure space, with f and g being two func-
tions f, g : X → R, measurable. Then we have

∫
X

|f(x)g(x)| dµ(x) ≤
(∫

X

|f(x)|p dµ(x)

) 1
p
(∫

X

|g(x)|q dµ(x)

) 1
q

,

where p and q are two conjugate exponents.

Proof. If one of the two terms in the product on the right-hand side of the inequality is zero or
infinite, the inequality is automatically satisfied, so we may assume this is not the case. We put

F (x) =
|f(x)|(∫

X
|f(x)|p dµ(x)

) 1
p

and G(x) =
|g(x)|(∫

X
|g(x)|q dµ(x)

) 1
q

,

c©2022, FERAHTIA Nassim Integral transformations in Lp spaces



1.1. CONVEX FUNCTIONS AND INEQUALITIES 7

we then have ∫
X

(F (x))p dµ(x) =

∫
X

(G(x))q dµ(x) = 1.

If x ∈ X is such that
0 < F (x) <∞ and 0 < G(x) <∞,

there exist two real numbers t and u such that

F (x) = e
t
p and G(x) = e

u
q .

Since the function ex is convex, and p and q are conjugate exponents, we have

e
t
p

+u
q ≤ 1

p
et +

1

q
eu.

It follows that, for every x in X,

F (x)G(x) ≤ 1

p
(F (x))p +

1

q
(G(x))q .

By integrating with respect to the measure µ, we have∫
X

F (x)G(x)dµ(x) ≤ 1

p

∫
X

(F (x))p dµ(x) +
1

q

∫
X

(G(x))q dµ(x)

≤ 1

p
+

1

q
= 1,

i.e., ∫
X

|f(x)|(∫
X
|f(x)|p dµ(x)

) 1
p

× |g(x)|(∫
X
|g(x)|q dµ(x)

) 1
q

dµ(x) ≤ 1,

so we have

1(∫
X
|f(x)|p dµ(x)

) 1
p

× 1(∫
X
|g(x)|q dµ(x)

) 1
q

∫
X

|f(x)g(x)| dµ(x) ≤ 1.

i.e., ∫
X

|f(x)g(x)| dµ(x) ≤
(∫

X

|f(x)|p dµ(x)

) 1
p
(∫

X

|g(x)|q dµ(x)

) 1
q

.

Remark 1.1. When p = q = 2, Hölder’s inequality is in this case known as the Cauchy-Schwarz
inequality.

Theorem 1.3. ( Minkowski Inequality ) Let (X,M, µ) be a measure space, with, f and g being two

c©2022, FERAHTIA Nassim Integral transformations in Lp spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON LP AND LP 8

functions, f, g : X → R, measurable. We have ∀ 1 ≤ p ≤ ∞

(∫
X

|f(x) + g(x)|p dµ(x)

) 1
p

≤
(∫

X

|f(x)|p dµ(x)

) 1
p

+

(∫
X

|g(x)|p dµ(x)

) 1
p

Proof. We have

(f(x) + g(x))p = f(x) (f(x) + g(x))p−1 + g(x) (f(x) + g(x))p−1

i.e.,
|f(x) + g(x)|p ≤ |f(x)| |f(x) + g(x)|p−1 + |g(x)| |f(x) + g(x)|p−1 . (1.1)

By applying Hölder’s inequality, we have

∫
X

|f(x)| |f(x) + g(x)|p−1 dµ(x) ≤
(∫

X

|f(x)|p dµ(x)

) 1
p
(∫

X

|f(x) + g(x)|(p−1)q

) 1
q

,

and ∫
X

|g(x)| |f(x) + g(x)|p−1 dµ(x) ≤
(∫

X

|g(x)|p dµ(x)

) 1
p
(∫

X

|f(x) + g(x)|(p−1)q

) 1
q

.

So, the equation (1.1) becomes

∫
X

|f(x) + g(x)|p dµ(x) ≤

((∫
X

|f(x)|p dµ(x)

) 1
p

+

(∫
X

|g(x)|p dµ(x)

) 1
p

)(∫
X

|f(x) + g(x)|(p−1)q dµ(x)

) 1
q

,

And since (p− 1)q = p, we then have

∫
X

|f(x) + g(x)|p dµ(x) ≤

((∫
X

|f(x)|p dµ(x)

) 1
p

+

(∫
X

|g(x)|p dµ(x)

) 1
p

)(∫
X

|f(x) + g(x)|p dµ(x)

) 1
q

.

We divide the two members by
(∫

X
|f(x) + g(x)|p dµ(x)

) 1
q , we obtain the desired result.

1.2 Elementary definitions and properties on Lp and Lp

1.2.1 the space Lp (X,M, µ)

Definition 1.3. Let p ∈ R with 1 ≤ p <∞, we put

Lp(X) =

{
f : (X,M, µ)→ (R,B(R), λ), f is measurable and

∫
X

|f(x)|p dµ(x) < +∞
}
.

c©2022, FERAHTIA Nassim Integral transformations in Lp spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON LP AND LP 9

We note

‖f‖Lp = ‖f‖p =

(∫
X

|f(x)|p dµ(x)

) 1
p

,

we will verify that ‖f‖p is a semi-norm.

Particular case
If (X,M, µ) = (N,P(N), card), we note `p = {x = (xn)n≥0 :

∑∞
n=0 |xn|

p <∞}, with the norm
‖x‖`p = ‖x‖p = (

∑∞
n=0 |xn|

p)
1
p .

Remark 1.2.

f ∈ Lp ⇔ ‖f‖p < +∞ and measurable, because

f ∈ Lp ⇔
∫
X

|f(x)|p dµ(x) < +∞ and measurable

⇔
(∫

X

|f(x)|p dµ(x)

) 1
p

< +∞ and measurable

⇔ ‖f‖p < +∞ and measurable.

Definition 1.4. A measurable function f : X → R is said to be essentially bounded if there
exists M ≥ 0 such that |f(x)| ≤M a. e.

i.e., µ ({x ∈ X : |f(x)| > M}) = 0.

We note by

L∞(X) = {f : X → R, f measurable such that ∃M ≥ 0 : |f(x)| ≤M a. e. on X} .

We also note, ‖f‖L∞ = ‖f‖∞ = supx∈Xess |f(x)| = inf {M : |f(x)| ≤M a. e. on X} .

Lemma 1.1. Let f ∈ L∞ (X,M, µ), so

|f(x)| ≤ ‖f‖∞ a. e. on X,

so that ‖f‖∞ = inf {M : |f(x)| ≤M a. e.}. In other words, ‖f‖∞ is an attained bound.

Remark 1.3. With the above notation, ‖f‖Lp = ‖f‖p =
(∫

X
|f(x)|p dµ(x)

) 1
p Hölder’s and

Minkowski’s inequalities can be written as follows

‖f · g‖1 ≤ ‖f‖p ‖g‖q , Hölder’s inequality.

‖f + g‖p ≤ ‖f‖p + ‖g‖p , Minkowski’s inequality.

c©2022, FERAHTIA Nassim Integral transformations in Lp spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON LP AND LP 10

Corollary 1.1. Let p ∈ [1,+∞], then Lp (X,M, µ) is a vector space over R and the mapping

‖·‖p : Lp → R+

f 7−→ ‖f‖p

is a semi-norm.

Proof. 1) Lp is a vector space over R
a) ∀f ∈ Lp, ∀g ∈ Lp⇒ (f + g) ∈ Lp

Let f ∈ Lp and g ∈ Lp. Then, according to Minkowski’s inequality, we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p (1.2)

Since f ∈ Lp⇔ ‖f‖p <∞ and g ∈ Lp⇔ ‖g‖p <∞.
So, (1.2)⇔ ‖f + g‖p ≤ ‖f‖p + ‖g‖p < +∞.
i.e., (f + g) ∈ Lp.
b) ∀λ ∈ R, ∀f ∈ Lp⇒ (λf) ∈ Lp. We have

‖λf‖p =

(∫
X

|λf(x)|p dµ(x)

) 1
p

= |λ| ‖f‖p
< ∞.

So, (λf) ∈ Lp.
i.e., Lp is a vector space on R.
2) ‖f‖p is a semi-norm, because
a) ‖f‖p ≥ 0

b) ‖λf‖p = |λ| ‖f‖p
c) ‖f + g‖p ≤ ‖f‖p + ‖g‖p , Minkowski inequality.
d) We have

f = 0 ⇒ ‖f‖p =

(∫
X

|0|p dµ(x)

) 1
p

= 0

and we also have

‖f‖p = 0 ⇒
(∫

X

|f(x)|p dµ(x)

) 1
p

= 0

⇒ f = 0 a. e. on X.

c©2022, FERAHTIA Nassim Integral transformations in Lp spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON LP AND LP 11

Hence the application f 7→ ‖f‖p is a semi-norm.

This result suggests decomposing the space Lp into equivalence classes in the following way:
we say that two functions f and g belonging to Lp are equivalent if ‖f − g‖p = 0,
i.e., f and g are almost everywhere equal.

1.2.2 the space Lp (X,M, µ)

Let us consider the equivalence relation on Lp (X,M, µ) defined by

fRg ⇔ f = g a. e. i.e., ‖f − g‖p = 0.

We denote by [f ] the equivalence class of f for this notation

[f ] = {g ∈ Lp : gRf}

= {g ∈ Lp : f = g a. e.}

Definition 1.5. Let p ∈ [1,+∞]. We note Lp (X,M, µ) the quotient Lp (X,M, µ) by the equiva-
lence relationR

Lp = {[f ] , f ∈ Lp}

= Lp/R.

If we put ‖[f ]‖p = ‖f‖p , we obtain

‖[f ]‖p = 0 ⇔ ‖f‖p = 0

⇔ f = 0 a. e.

⇔ [f ] = [0] .

We associate Lp(X) with the following two operations

+ : Lp(X)× Lp(X)→ Lp(X) and • : R× Lp(X)→ Lp(X)

defined by: [f ] + [g] = [f + g] and ∀λ ∈ R;λ [f ] = [λf ],
We obtain a new vector space (Lp(X),+, •) over the field R.

Remark 1.4. 1) We consider the elements of Lp(X) (the set of equivalence classes) as ordinary
functions, and we write f instead of [f ].

c©2022, FERAHTIA Nassim Integral transformations in Lp spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON LP AND LP 12

2) The mapping

‖·‖p : Lp(X) → R+

f 7→ ‖f‖p =

(∫
X

|f(x)|p dµ(x)

) 1
p

is a norm on Lp(X).

Theorem 1.4. (Riesz-Fisher Theorem) The Lebesgue space Lp (X,M, µ) is a Banach space (a complete
normed vector space) for every p ∈ [1,+∞], with the norm

1 ≤ p <∞, we have ‖f‖p =

(∫
X

|f(x)|p dµ(x)

) 1
p

, p = +∞ we have ‖f‖∞ = supx∈Xess |f(x)| .

Proof. See [3].

Convergence in Lp((X,M, µ) Let (fn)n≥0 be a sequence of functions in Lp, and let f ∈ Lp. We
say that the sequence (fn)n≥0 converges to f in Lp and we write fn

Lp→ f , if

limn→+∞ ‖fn − f‖p = 0.

Exercise 1.1. Let p, q ∈ [1,+∞] with 1
p

+ 1
q

= 1 and let f ∈ Lp([0,+∞[) and g ∈ Lq([0,+∞[),
calculate

limT→+∞
1

T

∫ T

0

f(x)g(x)dx

Solution We have ∣∣∣∣∫ T

0

f(x)g(x)dx

∣∣∣∣ ≤ ∫ T

0

|f(x)g(x)| dx

≤
∫ +∞

0

|f(x)g(x)| dx.

According to Hölder’s inequality, we have

∣∣∣∣∫ T

0

f(x)g(x)dx

∣∣∣∣ ≤ (∫ +∞

0

|f(x)|p dx
) 1

p
(∫ +∞

0

|g(x)|q dx
) 1

q

≤ ‖f‖p ‖g‖q .

So we have
1

T

∣∣∣∣∫ T

0

f(x)g(x)dx

∣∣∣∣ ≤ 1

T
‖f‖p ‖g‖q .

i.e.,

limT→+∞
1

T

∫ T

0

f(x)g(x)dx = 0.

c©2022, FERAHTIA Nassim Integral transformations in Lp spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON LP AND LP 13

Corollary 1.2. The space L2(X,M, µ) is a Hilbert space, equipped with the scalar product

< f, g >=

∫
X

f(x)g(x)dµ(x),

where f, g : X → R and f, g ∈ L2(X,M, µ).

Cauchy-Schwarz inequality:
Hölder’s inequality in the case p = 2, gives the Cauchy-Schwartz inequality. We have

‖f · g‖1 ≤ ‖f‖2 ‖g‖2 ,

so we have ∫
X

|f(x)g(x)| dµ(x) ≤
(∫

X

|f(x)|2 dµ(x)

) 1
2
(∫

X

|g(x)|2 dµ(x)

) 1
2

,

i.e.,
|< f, g >| ≤ ‖f‖2 · ‖g‖2 .

Remark 1.5. For p 6= 2, the space Lp(X,M, µ) is not a Hilbert space.

Theorem 1.5. 1) Let (X,M, µ) be a finite measure space (i.e., µ(X) < +∞) and let p, q ∈ [1,+∞]

with 1 ≤ q ≤ p. Then we have
Lp(X) ⊂ Lq(X).

2) If 1 ≤ p1 < p2, we have
`1 ⊂ `p1 ⊂ `p2 .

Proof. 1) Assume that 1 ≤ q < p (since the case q = p is trivial).
We put r = p

q
> 1 and r′ such that 1

r
+ 1

r′
= 1.

Let f ∈ Lp, so we have ∫
X

|f |qr dµ =

∫
X

|f |p dµ

< +∞,

i.e., (f)q ∈ Lr.
And ∫

X

|1|r
′
dµ = µ(X)

< +∞,

i.e., 1 ∈ Lr′ .

c©2022, FERAHTIA Nassim Integral transformations in Lp spaces



1.2. ELEMENTARY DEFINITIONS AND PROPERTIES ON LP AND LP 14

Hölder’s inequality applied to (f)q and 1, we obtain

∫
X

|f |q × 1dµ ≤
(∫

X

|f |qr dµ
) 1

r
(∫

X

|1|r
′
dµ

) 1
r′

≤ (

∫
X

|f |p dµ)
1
r (µ(X))

1
r′ .

Which implies that
‖f‖qq ≤ ‖f‖

q
p (µ(X))1− q

p ,

so we have
‖f‖q ≤ ‖f‖p (µ(X))

1
q
− 1
p ,

i.e.,
Lp(X) ⊂ Lq(X).

2) We show that if, p1 < p2 we have `p1 ⊂ `p2

Let x = (xn)n≥0 ∈ `p1 ⇔
∞∑
n=0

|xn|p1 <∞

i.e., the series is absolutely convergent⇒ the series is convergent.
So according to the necessary condition for the convergence of a series, we have

limn→+∞xn = 0⇔ ∀ε > 0;∃n0 ∈ N : ∀n ≥ n0; |xn| < ε = 1.

We have

p1 < p2 ⇒ |xn|p2 < |xn|p1 , ∀n ≥ n0

⇒
∞∑

n=n0

|xn|p2 <
∞∑

n=n0

|xn|p1

⇒
∞∑
n=0

|xn|p2 <∞,

i.e., x = (xn)n≥0 ∈ `p2 .

For the first inclusion, it is enough to replace the pair (p1, p2) with (1, p1).

Example 1.1. Let

f : (R,B(R), λ) −→ (R,B(R), λ)

x 7→ f(x) =
1

1 + |x|
, λ is the Lebesgue measure.

1) Show that f ∈ L2(R) and that f /∈ L1(R).
2) What can we deduce?
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Solution We have that f is continuous on R⇒ f is measurable.
moreover, ∫

R
|f(x)|2 dx =

∫
R

1

1 + 2 |x|+ x2
dx

≤
∫
R

1

1 + x2
dx = π

< ∞,

So, f ∈ L2(R).
But, ∫

R
|f(x)| dx =

∫
R

1

1 + |x|
dx

= 2

∫ +∞

0

1

1 + x
dx = +∞

So, f /∈ L1(R).
2) We deduce that L2(R) * L1(R), because λ(R) = +∞.

Theorem 1.6. (Extension of the Dominated Convergence Theorem (DCT) of Lebesgue)
Let p ∈ [1,+∞[, (fn)n≥0 a sequence of elements of Lp and g : X → R+ an element of Lp such that

(i) limn→+∞fn(x) = f(x) a. e. with respect to µ,

(ii) |fn(x)| ≤ g(x) a. e. with respect to µ.

Then, f ∈ Lp and limn→+∞ ‖fn − f‖p = 0

Corollary 1.3. Let (fn)n≥0 be a sequence of elements in Lp such that

∞∑
n=0

‖fn‖p < +∞.

Then the series
∞∑
n=0

fn(x) is absolutely convergent almost everywhere (a. e.) with respect to µ. More-

over, the function f(x) =
∞∑
n=0

fn(x) defined almost everywhere with respect to µ belongs to Lp and

limn→+∞ ‖
∑n

k=0 fk − f‖p = 0.

1.3 Density theorems

We will establish that certain sets of particularly simple functions are dense in the Lp spaces.
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Definition 1.6. Let (E, ‖·‖) be a normed space and E0 a subspace of E, We say that E0 is dense
in E, if, for every f ∈ E and every ε > 0 there exists an element f0 ∈ E0 such that ‖f − f0‖ < ε.

Theorem 1.7. Let (X,M, µ) be a measure space. The set E of step functions defined on this space, such
that

(∀f ∈ E); µ({x ∈ X : f(x) 6= 0}) <∞,

is dense in Lp(X), for 1 ≤ p <∞.

Proof. The definition of the set E implies that E ⊂ Lp. Let f be a positive function in Lp and
let (en)n≥0 be an increasing sequence of positive step functions converging to f . For every n

we have 0 ≤ en < f which implies that en ∈ Lp, and consequently, en ∈ E. Furthermore, the
inequality |f − en|p ≤ fp allows us to apply Lebesgue’s Dominated Convergence Theorem. It
follows that

limn→∞ ‖f − en‖p = 0.

f belongs to the closure of E. Since any real (or complex) function can be written as a linear
combination of two (or four) positive functions, we deduce that Lp coincides with the closure
of E, or equivalently that, E is dense in Lp.

• We now present some results concerning density in the space Lp, in the case where X = R
and µ is the Lebesgue measure λ.

Definition 1.7. Let f : R → R be a continuous function. The support of f is defined as the
closure of the open set {x ∈ R : f(x) 6= 0} , i.e.,

supp f = {x ∈ R : f(x) 6= 0}.

Corollary 1.4. The vector space C0
c (R) of continuous functions with compact support on R is dense in

Lp for every p ∈ [1,+∞[.

Example 1.2. The function

ϕ(x) =

e
−1

1−x2 , |x| < 1

0 , |x| ≥ 1

belongs to the space C0
c (R), because the function is continuous on R, and its support is

supp ϕ = [−1, 1].

Corollary 1.5. The vector space Ck
c (R) of functions of class Ck with bounded support on R is dense in

Lp for all p ∈ [1,+∞[.

Remarks 1.2. 1) k being arbitrary, note that in particular the space of indefinitely differentiable
functions with bounded support on R (i.e., the space of test functions, denoted D(R)) is dense
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in Lp for all p ∈ [1,+∞[.
2) The results we obtained are only valid for 1 ≤ p < ∞. Thus, for example the constant
function f(x) = 1 which belongs to L∞ does not belong to the closure of C0

c (R).

1.4 Some properties of the space Lp(X)

The table below presents some properties of the space Lp (Reflexivity, Separability, Dual of Lp).

The space Lp(X) Reflexive Separable Dual space

Lp, 1 < p <∞ Yes Yes Lq, with 1
p

+ 1
q

= 1

L1 No Yes L∞

L∞ No No strictly contains L1

Exercise 1.2. 1) Let (X,M, µ) be a measured space, and let f and g be two functions belonging
respectively to Lp(X) and Lq(X) where p and q are positive. Show that if we put 1

p
+ 1

q
= 1

r
, then

we have
f · g ∈ Lr(X) and ‖fg‖r ≤ ‖f‖p ‖g‖q .

2) Now let p, q ∈]1,+∞[ such that pq ≥ p + q, suppose that (fn)n≥0 ∈ Lp and (gn)n≥0 ∈ Lq such
that

fn
Lp→ f and gn

Lq→ g.

Find the appropriate space such that the sequence (fngn)n≥0 converges in that space?

Solution 1) We have

‖fg‖rr =

∫
X

|f |r |g|r dµ (1.3)

We have: 1
p

+ 1
q

= 1
r
⇒ 1

p
r

+ 1
q
r

= 1.

According to Hölder’s inequality, we have

(1.3)⇔ ‖fg‖rr =

∫
X

|f |r |g|r dµ

≤ (

∫
X

(|f |r)
p
r dµ)

r
p (

∫
X

(|g|r)
q
r dµ)

r
q

≤ ‖f‖rp ‖g‖
r
q ,

i.e.,
‖fg‖r ≤ ‖f‖p ‖g‖q .

We have f ∈ Lp⇔ f is measurable and ‖f‖p <∞, g ∈ Lq ⇔ g is measurable and ‖g‖q <∞, so
(f · g) is measurable and ‖fg‖r <∞, which implies that f · g ∈ Lr(X).
2) We have

fngn − fg = (fn − f)(gn − g) + (fn − f)g + f(gn − g).
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According to Minkowski’s inequality, we have

‖fngn − fg‖r ≤ ‖(fn − f)(gn − g)‖r + ‖(fn − f)g‖r + ‖f(gn − g)‖r .

According to Hölder’s inequality, we have

‖fngn − fg‖r ≤ ‖fn − f‖p ‖gn − g‖q + ‖fn − f‖p ‖g‖q + ‖f‖p ‖gn − g‖q .

Then we have
limn→+∞ ‖fngn − fg‖r = 0,

which implies that fngn
Lr→ fg for r = pq

p+q
.
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CHAPTER 2

FOURIER TRANSFORM

I n analysis, the Fourier transform is an extension, for non-periodic functions, of the Fourier
series expansion of periodic functions. The Fourier transform associates, to an integrable

function defined on R and taking real or complex values, another function on R called the
Fourier transform, whose independent variable can be interpreted in physics as frequency or
angular frequency.
The Fourier transform represents a function by the spectral density from which it originates, as
an average of trigonometric functions of all frequencies. Measure theory as well as distribution
theory provide rigorous foundations for the definition of the Fourier transform in its full gen-
erality; it plays a fundamental role in harmonic analysis. When a function represents a physical
phenomenon, such as the state of an electromagnetic field or an acoustic field at a point, it is
called a signal, and its Fourier transform is called its spectrum.
In this chapter, we will study the Fourier transform of summable and square-integrable func-
tions, along with some properties and applications for solving integral equations and partial
differential equations.

2.1 Definitions and Notations

We denote by L1(R), the set of measurable functions defined from R to R, such that∫
R
|f(x)| dx < +∞

.
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Examples 2.1. 1) The function f(x) = 1
1+x2

belongs to L1(R), because f is measurable and∫
R
|f(x)| dx =

∫
R

∣∣∣∣ 1

1 + x2

∣∣∣∣ dx
=

∫
R

1

1 + x2
dx = π < +∞

2) The function g from R to R defined by g(x) = x does not belong to L1(R). In general, except
in the case of the zero function, polynomial functions do not belong to L1(R).

Definition 2.1. Let f ∈ L1(R). The Fourier transform of f is the complex-valued function of the
real variable ξ defined by

f̂(ξ) =

∫
R
e−2πix·ξf(x)dx, ξ ∈ R.

This integral is well-defined because
∣∣e−2πix·ξf(x)

∣∣ = |f(x)| and f ∈ L1(R).

We will symbolically write, f̂(ξ) = F(f(x))(ξ).

Proposition 2.1. If f ∈ L1(R), then f̂ is bounded and continuous, f̂(ξ) tends to 0 as |ξ| → +∞, and∥∥∥f̂∥∥∥
∞
≤ ‖f‖1 .

Proof. We have

f̂(ξ) =

∫
R
e−2πix·ξf(x)dx, ξ ∈ R.

The function under the integral sign is continuous for almost every x ∈ R and measurable for
every ξ ∈ R. Moreover, we have

∣∣e−2πix·ξf(x)
∣∣ = |f(x)| , ∀ξ ∈ R.

The second term belongs to L1(R), and by the continuity theorem for functions defined by
integrals, the function f̂ is continuous. Moreover, we have∣∣∣f̂(ξ)

∣∣∣ ≤ ∫
R
|f(x)| dx

= ‖f‖1 , ∀ξ ∈ R

i.e., ∥∥∥f̂∥∥∥
∞

= supξ∈Ress
∣∣∣f̂(ξ)

∣∣∣
≤ ‖f‖1

< +∞.

This shows that f̂ is bounded.
•We now show that lim|ξ|→+∞f̂(ξ) = 0.
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It is known that the space of functions with bounded support on R is dense in L1(R), i.e.,
∀f ∈ L1(R), ∃(ϕn)n≥0 a sequence of functions with bounded support such that

ϕn
L1

→ f ⇔ limn→+∞ ‖ϕn − f‖1 = 0.

Then we have, ϕ(x) =
n∑
k=1

αkχ[αk−1,αk](x),

which implies that

ϕ̂(ξ) =

∫
R
(
n∑
k=1

αkχ[αk−1,αk](x))e−2πix·ξdx

=
n∑
k=1

αk

∫ αk

αk−1

e−2πix·ξdx

=
n∑
k=1

iαk
2πξ

(e−2πiξαk − e−2πiξαk−1),

so we have

|ϕ̂(ξ)| ≤ 1

π
(
n∑
k=1

|αk|)
1

|ξ|
.

If |ξ| → ∞, on a |ϕ̂(ξ)| → 0, so ∣∣∣f̂(ξ)
∣∣∣ ≤ ∣∣∣f̂(ξ)− ϕ̂(ξ)

∣∣∣+ |ϕ̂(ξ)| .

Which implies that lim|ξ|→+∞

∣∣∣f̂(ξ)
∣∣∣ = 0,

i.e.,
lim|ξ|→+∞f̂(ξ) = 0.

Example 2.1. Calculate the Fourier transform of the rectangular function:

π(x) =

1, |x| ≤ 1
2

0, |x| > 1
2

.
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Solution We have

π̂(ξ) =

∫
R
e−2πix·ξ · π(x)dx

=

∫ 1
2

− 1
2

e−2πix·ξdx

=
−1

2πiξ
(e−πiξ − eπiξ)

=
1

πξ
(
eπiξ − e−πiξ

2i
),

so,

π̂(ξ) =
sin(πξ)

πξ
, car sin(θ) =

eiθ − e−iθ

2i
, avec θ = πξ.

2.1.1 Particular case 1: if f is an even function

We know that eiθ = cos(θ) + i sin(θ), so the Fourier integral can be written as

F(f(x))(ξ) =

∫ +∞

−∞
(cos(2πxξ)− i sin(2πxξ))f(x)dx.

Now, the functions x 7→ f(x) cos(2πxξ) and x 7→ f(x) sin(2πxξ) are even and odd functions,
respectively. Therefore,∫

R
f(x) cos(2πxξ)dx = 2

∫ +∞

0

f(x) cos(2πxξ)dx and
∫
R
f(x) sin(2πxξ)dx = 0.

Hence, if f is even, F(f(x))(ξ) is a real number, and

F(f(x))(ξ) = 2

∫ +∞

0

f(x) cos(2πxξ)dx.

2.1.2 Particular case 2: if f is an odd function

In the same way, we can show that if f is odd, then F(f(x))(ξ) is a purely imaginary number,
and we have

F(f(x))(ξ) = −2i

∫ +∞

0

f(x) sin(2πxξ)dx.
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2.2 Inverse Fourier Transform

We can obtain f(x) from f̂(ξ) using the inverse transform (also called the Fourier inversion
formula):

f(x) = F−1(f̂(ξ))(x)

=

∫
R
e2πix·ξf̂(ξ)dξ.

More generally, if f is not continuous at x0, we have∫ +∞

−∞
e2πix·ξf̂(ξ)dξ =

f(x0 + 0) + f(x0 − 0)

2
,

where f(x0 + 0) and f(x0 − 0) are the right-hand and left-hand limits of f(x).

Exercise 2.1. 1) Find the Fourier transform of f(x) =

1, |x| < a

0, |x| > a

2) Using the inverse Fourier transform, calculate the integral
∫ +∞
−∞

cos(2πxξ) sin(2πaξ)
ξ

dξ.

3) Deduce the value of the integral
∫ +∞

0
sin(x)
x
dx.

Solution We have

f̂(ξ) =

∫
R
e−2πix·ξ · f(x)dx

=

∫ a

−a
e−2πix·ξdx

=
−1

2πiξ
(e−2πiaξ − e2πiaξ)

=
1

πξ
(
e2πiaξ − e−2πiaξ

2i
)

so,

f̂(ξ) =
sin(2πaξ)

πξ
, because sin(θ) =

eiθ − e−iθ

2i
, with θ = 2πaξ.

2) According to the Fourier inversion formula, we have∫
R
e2πix·ξf̂(ξ)dξ = f(x),
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which implies that

∫
R
(cos(2πxξ) + i sin(2πxξ))f̂(ξ)dξ =


1, |x| < a

1
2
, |x| = a

0, |x| > a

so we have

∫
R

cos(2πxξ) sin(2πaξ)

πξ
dξ + i

∫
R

sin(2πxξ) sin(2πaξ)

πξ
dξ =


1, |x| < a

1
2
, |x| = a

0, |x| > a

(2.1)

Now, the function ξ 7→ sin(2πxξ) sin(2πaξ)
πξ

is an odd function, so the relation (2.1) becomes

∫
R

cos(2πxξ) sin(2πaξ)

ξ
dξ =


π, |x| < a

π
2
, |x| = a

0, |x| > a

3) For x = 0 and a = 1
2π

, we have∫
R

sin(ξ)

ξ
dξ = π ⇒ 2

∫ +∞

0

sin(ξ)

ξ
dξ = π

i.e., ∫ +∞

0

sin(ξ)

ξ
dξ =

π

2
.

2.3 Properties of the Fourier transform

1) Linearity Let f, g ∈ L1(R) and α, β ∈ R ∨ C, then

F(αf(x) + βg(x))(ξ) = αf̂(ξ) + βĝ(ξ).

Proof. We have

F(αf(x) + βg(x))(ξ) =

∫
R
e−2πix·ξ(αf(x) + βg(x))dx

= α

∫
R
e−2πix·ξf(x)dx+ β

∫
R
e−2πix·ξg(x)dx

= αf̂(ξ) + βĝ(ξ)
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2) Translation Let f ∈ L1(R) and a ∈ R, then

F(τaf)(ξ) = e−2πiaξf̂(ξ),

where (τaf)(x) = f(x− a).

Proof. We have

F(f(x− a))(ξ) =

∫
R
e−2πix·ξf(x− a)dx, we put y = x− a

=

∫
R
e−2πi(y+a)ξf(y)dy

= e−2πiaξ

∫
R
e−2πiyξf(y)dy

= e−2πiaξf̂(ξ)

3) Change of scale Let f ∈ L1(R) and λ ∈ R?, then

F(hλf)(ξ) =
1

|λ|
f̂(
ξ

λ
),

where (hλf)(x) = f(λx).

Proof. We have

F(hλf)(ξ) =

∫
R
e−2πix·ξf(λx)dx, There are two cases

a) λ > 0, we put λx = y⇔ dy = λdx, so we have

F(f(λx))(ξ) =

∫
R
e−2πiy ξ

λf(y)
dy

λ

=
1

λ

∫
R
e−2πiy( ξ

λ
)f(y)dy

=
1

λ
f̂(
ξ

λ
)
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b) λ < 0, so we have λx = y⇔ dy = λdx

F(f(λx))(ξ) =

∫ −∞
+∞

e−2πiy ξ
λf(y)

dy

λ

=
−1

λ

∫ +∞

−∞
e−2πiy( ξ

λ
)f(y)dy

=
−1

λ
f̂(
ξ

λ
)

=
1

−λ
f̂(
ξ

λ
),

so we have
F(f(λx))(ξ) =

1

|λ|
f̂(
ξ

λ
).

4) Modulation Let f ∈ L1(R) and ξ0 ∈ R, then

F(e2πiξ0xf(x))(ξ) = f̂(ξ − ξ0).

Proof. We have

F(e2πiξ0xf(x))(ξ) =

∫
R
e−2πix·ξ · e2πiξ0xf(x)dx

=

∫
R
e−2πi(ξ−ξ0)xf(x)dx

= f̂(ξ − ξ0).

Remark 2.1. If f ∈ L1(R), then limx→+∞f(x) = limx→−∞f(x) = 0.

Proposition 2.2. Let f ∈ L1(R), and suppose that f is differentiable and f ′ ∈ L1(R), then

F(f ′(x))(ξ) = (2πiξ)f̂(ξ).

Moreover, if f has derivatives up to order n that all belong to L1(R), then

F(f (n)(x))(ξ) = (2πiξ)nf̂(ξ).
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Proof. We have

F(f ′(x))(ξ) =

∫
R
e−2πix·ξf ′(x)dx

= [e−2πix·ξf(x)]+∞−∞ + (2πiξ)

∫ +∞

−∞
e−2πix·ξf(x)dx, by parts

= 0 + (2πiξ)f̂(ξ), because e−2πix·ξf(x) ∈ L1(R).

•We can show by recurrence that

F(f (n)(x))(ξ) = (2πiξ)nf̂(ξ).

Proposition 2.3. Let f ∈ L1(R). If xf(x) ∈ L1(R), then f̂ is differentiable and we have

d

dξ
f̂(ξ) = F(−2πixf(x))(ξ),

if further, xnf(x) ∈ L1(R) then

d(n)

dξn
f̂(ξ) = F((−2πix)nf(x))(ξ).

Proof. We have
d

dξ
f̂(ξ) =

d

dξ

∫
R
e−2πix·ξf(x)dx,

Since
∣∣−2πixf(x)e−2πix·ξ

∣∣ = 2π |xf(x)| and by assumption xf(x) ∈ L1(R), then according to the
derivation theorem under the integral sign,

d

dξ
f̂(ξ) =

∫
R

d

dξ
e−2πix·ξf(x)dx

=

∫
R
−2πixe−2πix·ξf(x)dx

= F(−2πixf(x))(ξ).

•More Generally, if xnf(x) ∈ L1(R) we can show by recurrence that

d(n)

dξn
f̂(ξ) = F((−2πix)nf(x))(ξ).
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2.4 Convolution product

Let f, g ∈ L1(R). Then the convolution (f ? g) ∈ L1(R) and we have

(f ? g)(x) =

∫
R
f(t)g(x− t)dt.

The Fourier transform of the convolution product is

F((f ? g)(x))(ξ) = f̂(ξ) · ĝ(ξ).

We can also show that

F−1((f ? g)(x))(ξ) = F−1(f(x))(ξ) · F−1(g(x))(ξ).

Proof. We have

F((f ? g)(x))(ξ) =

∫
R
e−2πix·ξ(f ? g)(x)dx

=

∫ +∞

−∞
e−2πix·ξ(

∫ +∞

−∞
f(t)g(x− t)dt)dx.

By applying Fubini’s Theorem, we obtain∫ +∞

−∞
e−2πix·ξ(

∫ +∞

−∞
f(t)g(x− t)dt)dx =

∫ +∞

−∞
f(t)(

∫ +∞

−∞
e−2πix·ξg(x− t)dx)dt.

We put y = x− t⇔ dy = dx, then

F((f ? g)(x))(ξ) =

∫ +∞

−∞
f(t)(

∫ +∞

−∞
e−2πi(y+t)ξg(y)dy)dt

=

∫ +∞

−∞
e−2πit·ξf(t)(

∫ +∞

−∞
e−2πiy·ξg(y)dy)dt

=

∫ +∞

−∞
e−2πit·ξf(t)dt

∫ +∞

−∞
e−2πiy·ξg(y)dy

= f̂(ξ) · ĝ(ξ).
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2.5 Parseval-Plancherel formula

We have the following relation established by Parseval for Fourier series and generalized by
Plancherel (1910) to Fourier transforms∫ +∞

−∞
f(x)g(x)dx =

∫ +∞

−∞
f̂(ξ)ĝ(ξ)dξ.

An important special case if f = g, we have∫ +∞

−∞
f(x)f(x)dx =

∫ +∞

−∞
f̂(ξ)f̂(ξ)dξ,

i.e., ∫ +∞

−∞
|f(x)|2 dx =

∫ +∞

−∞

∣∣∣f̂(ξ)
∣∣∣2 dξ.

Proof. We have ∫
R
f(x)g(x)dx = F [f(x)g(x)]ξ=0

= [f̂(ξ) ? ĝ(−ξ)]ξ=0

= [

∫
R
f̂(t)ĝ(t− ξ)dt]ξ=0

=

∫
R
f̂(t)ĝ(t)dt.

Exercise 2.2. Consider the functions defined on R by

f(x) =
1

1 + x2
, g(x) =

1

2− 2x+ x2
, h(x) =

x

(1 + x2)2
,

Knowing that f̂(ξ) = πe−2π|ξ|, determine ĝ(ξ) and ĥ(ξ).

Solution We have g(x) = 1
2−2x+x2

⇒ g(x) = 1
(x−1)2+1

i.e., g(x) = (τ1f)(x), so ĝ(ξ) = F((τ1f)(x))(ξ)

⇒ ĝ(ξ) = e−2πiξ(1) · f̂(ξ)

i.e.,
ĝ(ξ) = e−2πiξπe−2π|ξ|.
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•We have d
dx

( 1
1+x2

) = −2x
(1+x2)2

⇒ h(x) = −1
2
f ′(x), then

ĥ(ξ) = F(
−1

2
f ′(x))(ξ)

=
−1

2
F(f ′(x))(ξ)

=
−1

2
(2πiξ) · f̂(ξ)

= −iπ2ξe−2π|ξ|.

Proposition 2.4. Let f ∈ L1(R), then we have

F(f∨(x))(ξ) = f̂(−ξ), where f∨(x) = f(−x).

Proof. We have

F(f∨(x))(ξ) =

∫
R
e−2πix·ξf(−x)dx, we put y = −x⇔ dy = −dx

= −
∫ −∞

+∞
e−2πi(−y)ξf(y)dy

=

∫ +∞

−∞
e−2πiy(−ξ)f(y)dy

= f̂(−ξ).

Corollary 2.1. Let f ∈ L1(R) be such that f̂ ∈ L1(R). Then, for all x ∈ R we have

F(f̂(ξ))(x) = f(−x).

In other words, F(F(f)) = f∨ a. e.

2.6 Usual examples

Let a > 0 be fixed, c and d be two real numbers such that c < d.

Direct calculation : Applying the definition of the Fourier transform we have for all ξ ∈ R,

(i) F(χ[c,d](x))(ξ) =

d− c, ξ = 0

sin(π(d−c)ξ)
πξ

e−iπ(c+d)ξ, ξ 6= 0

in particular F(χ[−a
2
,a
2

](x))(ξ) = sin(πaξ)
πξ

.

(ii) F(e−axχ]0,+∞[(x))(ξ) = 1
a+2πiξ

.
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(iii) F((1− 2|x|
a

)χ[−a
2
,a
2

](x))(ξ) = 2
sin2(πaξ

2
)

π2aξ2
.

(iv) F(eaxχ]−∞,0[(x))(ξ) = 1
a−2πiξ

.

(v) F(e−a|x|)(ξ) = 2a
a2+4π2ξ2

.

(vi) F(sign(x)e−a|x|)(ξ) = −4πiξ
a2+4π2ξ2

.

(vii) F(e−ax
2
)(ξ) =

√
π
a
e−

π2ξ2

a .

(viii) F( 1
ch(ax)

)(ξ) = 1

ch(π
2ξ
a

)
.

(ix) F( 1
a2+x2

)(ξ) = π
a
e−2πa|ξ|.

Theorem 2.1. Let f ∈ L1(R) be such that f̂(ξ) = 0, then f = 0 a. e.

2.7 Resolution of integral equations by the Fourier transform

A Fredholm integral equation of the second kind is an equation of the form

ϕ(x)−
∫ +∞

−∞
k(x, y)ϕ(y)dy = f(x), (2.2)

where f and k are given functions, k(x, y) is called the kernel of the integral, and ϕ(x) is the
unknown function. To solve it, the kernel must depend on the difference of the arguments, i.e.,
the equation (2.2) becomes

ϕ(x)−
∫ +∞

−∞
k(x− y)ϕ(y)dy = f(x), (2.3)

which implies that
ϕ(x)− (k ? ϕ)(x) = f(x).

By applying the Fourier transform, we obtain

ϕ̂(ξ)− k̂(ξ) · ϕ̂(ξ) = f̂(ξ), (2.4)

with ϕ̂(ξ), k̂(ξ), f̂(ξ) being the Fourier transforms of ϕ(x), k(x), f(x) respectively. Under the
condition 1− k̂(ξ) 6= 0, the equation (2.4) becomes

ϕ̂(ξ) =
f̂(ξ)

1− k̂(ξ)
.
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Using the Fourier inversion formula, we obtain

ϕ(x) =

∫ +∞

−∞
e2πixξ f̂(ξ)

1− k̂(ξ)
dξ.

Exercise 2.3. Solve the following integral equation

ϕ(x)− λ
∫
R
e−|x−t|ϕ(t)dt = e−|x|, λ ∈ R et λ > 0, (2.5)

knowing that F(e−a|x|)(ξ) = 2a
a2+4π2ξ2

.

Solution We put f(x) = e−|x|, so the equation (2.5) becomes

ϕ(x)− λ(f ? ϕ)(x) = f(x).

By applying the Fourier transform, we obtain

ϕ̂(ξ)− λ(f̂(ξ) · ϕ̂(ξ)) = f̂(ξ),

which implies that
(1− λf̂(ξ))ϕ̂(ξ) = f̂(ξ),

so we have

ϕ̂(ξ) =
f̂(ξ)

1− λf̂(ξ)
, car f̂(ξ) 6= 1

λ
.

i.e.,
ϕ̂(ξ) =

2

(1− 2λ) + 4π2ξ2
.

• If (1− 2λ) ≤ 0⇔ λ ≥ 1
2
, the function

ξ 7−→ 2

(1− 2λ) + 4π2ξ2
,

is not continuous on R, therefore cannot be the Fourier transform of an integrable function, so
the equation (2.5) has no solution.
• If (1− 2λ) > 0⇔ λ ∈]0, 1

2
[, the function ξ 7−→ 2

(1−2λ)+4π2ξ2
is continuous on R, so we have

ϕ̂(ξ) =
2

(1− 2λ) + 4π2ξ2

=
1√

1− 2λ
· 2

√
1− 2λ

(
√

1− 2λ)2 + 4π2ξ2

=
1√

1− 2λ
F(e−

√
1−2λ|x|)(ξ).
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i.e.,
F(ϕ(x))(ξ) = F(

1√
1− 2λ

· e−
√

1−2λ|x|)(ξ).

Since the Fourier transform is injective on L1(R), we have

ϕ(x) =
1√

1− 2λ
· e−

√
1−2λ|x|.

2.8 Extension of the Fourier Transform to Square-Integrable

Functions

The definition of the Fourier transform given by the formula
∫
R e
−2πix·ξf(x)dx is not directly

applicable to an arbitrary function in L2(R). However, this definition is valid when f ∈ L1(R)∩
L2(R), and in that case, one can show that f̂ also belongs to L2(R), and ‖f‖2 =

∥∥∥f̂∥∥∥
2
. This

isometry from L1(R) ∩ L2(R) into L2(R) extends to an isometry from L2(R) onto L2(R), and
this extension allows one to define the Fourier transform ( also called the Fourier-Plancherel
transform) for any function f of L2(R).

Theorem 2.2. (Plancherel’s theorem) Let f ∈ L1(R) ∩ L2(R). Then f̂ ∈ L2(R) and we have

‖f‖2 =
∥∥∥f̂∥∥∥

2
.

The extension of the Fourier transform to L2(R) is carried out using the density of (L1(R) ∩
L2(R), ‖·‖2) in L2(R), and the completion of L2(R). This is an application of the following result
from topology:

Lemma 2.1. Let E and F be normed vector spaces, with F complete, and let G be a dense subspace of
E. If u is a continuous linear map from G into F , then there exists a unique continuous linear extension
ũ from E into F , and the norm of ũ is equal to the norm of u.

According to Plancherel’s theorem (Theorem 2.2) F is an isometry from L1(R) ∩ L2(R) into
L2(R). By applying the above lemma with E = F = L2(R) and G = L1(R) ∩ L2(R), we obtain
the following theorem

Theorem 2.3. (Plancherel-Riesz Theorem) There exists a unique automorphism, also denoted by F ,
of L2(R) that canonically extends the isometry.

L1(R) ∩ L2(R) → L2(R)

f 7→ f̂

Moreover, for every (f, g) ∈ L2(R)× L2(R), we have
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1. F(F−1(f)) = F−1(F(f)) = f p. p.

2.
∫
R f(x)g(x)dx =

∫
R f̂(ξ)ĝ(ξ)dξ Formule de Parseval-Plancherel.

3. limA→+∞ ‖ϕA −F(f)‖2 = 0 où ϕA(ξ) =
∫
R e
−2πix·ξf(x)χ[−A,A](x)dx.

4. limA→+∞ ‖ψA − f‖2 = 0 où ψA(x) =
∫
R e

2πix·ξf̂(ξ)χ[−A,A](ξ)dξ.

Exercise 2.4. We consider the functions defined on R by

f(x) =
sin(πx)

πx
and g(x) = sin(πx)e−πx

2

.

1) Calculate f̂(ξ) and deduce the value of the integral
∫ +∞
−∞ ( sin(πx)

πx
)2dx

2) Calculate ĝ(ξ), Recall that F(πxe−πx
2
)(ξ) = −iπξe−πξ2 .

Solution 1) We know from Example 2.1 that the Fourier transform of the gate function π(x) is

π̂(ξ) =
sin(πξ)

πξ
.

So we have
F(π̂(x))(ξ) = π(−ξ),

which implies that

F(
sin(πx)

πx
)(ξ) = π(ξ) because π is even.

• According to the Parseval-Plancherel formula, we have∫
R
(
sin(πx)

πx
)2dx =

∫
R
(π(ξ))2dξ

=

∫ 1
2

− 1
2

(1)2dξ

= 1.

2) We have

g(x) = sin(πx)e−πx
2

=
sin(πx)

πx
· πxe−πx2

= f(x) · h(x), with h(x) = πxe−πx
2

.
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So we have

ĝ(ξ) = F(f(x) · h(x))(ξ)

= f̂(ξ) ? ĥ(ξ)

=

∫
R
f̂(ξ − y)ĥ(y)dy

=

∫
R
π(ξ − y)(−iπye−πy2)dy

= −iπ
∫ ξ+ 1

2

ξ− 1
2

ye−πy
2

dy

= − i
2

(e−πξ
2+πξ−π

4 − e−πξ2−πξ−
π
4 ).

i.e.,
ĝ(ξ) = −ie−πξ2−

π
4 sh(πξ).

Theorem 2.4. 1. If (f, g) ∈ L1(R)× L2(R), so F(f ? g) = F(f)F(g).

2. If (f, g) ∈ L2(R)× L2(R), so F(f · g) = F(f) ? F(g).

2.9 Fourier transform in L2(R) of a derivative

Theorem 2.5. Let f ∈ L2(R)

• If f is piecewise continuous of class C1 and such that f ′ ∈ L2(R), then for all ξ ∈ R,

F(f ′(x))(ξ) = (2πiξ)f̂(ξ).

• If moreover f is of class Cm piecewise where m ∈ N? and such that the derivatives f (k) up to order m
inclusive are square integrable, then for almost all ξ ∈ R and for all 1 ≤ k ≤ m, we have

F(f (k)(x))(ξ) = (2πiξ)kf̂(ξ).

Exercise 2.5. Is the Fourier transform of the derivative applicable to the function f(x) =

χ[−1,1](x).

Solution We have f ′(x) = 0 p. p., so f̂ ′(ξ) = 0.

On the other hand, we have according to the usual example F(χ[−1,1](x))(ξ) = sin(2πξ)
πξ

, so

(2πiξ)f̂(ξ) = 2i sin(2πξ),

i.e.,
f̂ ′(ξ) 6= (2πiξ)f̂(ξ), because
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f is not differentiable at points (1) and (−1).

2.10 Application to the resolution of partial differential equa-

tions

2.10.1 Heat equation

Let us consider a homogeneous (very thin) rod of infinite length, isolated from the external
environment. At time t = 0, the temperature distribution along the rod is given by u0(x) =

u(0, x) for each point (x ∈ R). We aim to determine its evolution u(t, x), knowing that it satisfies
the so-called heat equation.

(c)

∂u
∂t
− ∂2u

∂x2
= 0, (t, x) ∈]0,+∞[×R

u(0, x) = u0(x), x ∈ R
.

•We assume that u0 ∈ L1(R), and we look for a function u(t, x) ∈ C1,2(]0,+∞[×R).
•We assume that for fixed t > 0, we have∫

R
|u(t, x)| dx < +∞,

∫
R

∣∣∣∣∂u∂t (t, x)

∣∣∣∣ dx < +∞,
∫
R

∣∣∣∣∂2u

∂x2
(t, x)

∣∣∣∣ dx < +∞,

so that the functions x 7→ u(t, x), x 7→ ∂u
∂t

(t, x), x 7→ ∂2u
∂x2

(t, x) have, for each fixed value of t > 0,
a Fourier transform with respect to the spatial variable x.
•Moreover, we assume that for t > 0, we have∫

R

∂u

∂t
(t, x)e−2πix·ξdx =

∂

∂t
(

∫
R
u(t, x)e−2πix·ξdx).

We put for t ≥ 0 fixed

û(t, ξ) =

∫
R
e−2πix·ξu(t, x)dx.

Applying the Fourier transform with respect to the space variable x, we obtain

F(
∂u

∂t
− ∂2u

∂x2
)(ξ) = 0,

which implies that

F(
∂u

∂t
)(ξ)−F(

∂2u

∂x2
)(ξ) = 0,

so we have ∫
R
e−2πix·ξ ∂u

∂t
(t, x)dx− (2πiξ)2û(t, ξ) = 0,
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i.e.,
∂

∂t
û(t, ξ) + 4π2ξ2û(t, ξ) = 0. (2.6)

Thus, ∀ξ ∈ R fixed, û is the solution of the differential equation with respect to time t, therefore

û(t, ξ) = ce−4π2ξ2t.

For t = 0⇒ û(0, ξ) = c = û0(ξ), so the solution is

û(t, ξ) = û0(ξ)e−4π2ξ2t.

The Fourier inversion formula gives

u(t, x) = F−1(û0(ξ)e−4π2ξ2t)(x)

= F−1(û0(ξ))(x) ? F−1(e−4π2ξ2t)(x)

= u0(x) ?
1√
4πt

e−
x2

4t , car F(
1√
4πt

e−
x2

4t )(ξ) = e−4π2ξ2t

= (u0 ?
1√
4πt

e−
x2

4t )(x),

i.e.,

u(t, x) =
1√
4πt

∫
R
e−

(x−y)2
4t u0(y)dy.

Exercise 2.6. Let f be the function defined on R by f(x) = e−πx
2

1) Check that f is the solution to the differential equation

f ′(x) + 2πxf(x) = 0 (2.7)

2) By applying the Fourier transform to (2.7), show that f̂(ξ) is a solution to a first-order differ-
ential equation (̂2.7) that we will determine.
3) Solve (̂2.7) and determine f̂(ξ), knowing that

∫
R e
−πx2dx = 1.

Solution 1) We have

f ′(x) + 2πxf(x) = −2πxe−πx
2

+ 2πxe−πx
2

= 0.

2) Applying the Fourier transform, we obtain

F(f ′(x) + 2πxf(x))(ξ) = 0,
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which implies that

F(f ′(x))(ξ) + 2πF(xf(x))(ξ) = 0, because F is linear

i.e.,

(2πiξ)f̂(ξ) + 2π(
−1

2πi

d

dξ
f̂(ξ)) = 0,

then the equation (̂2.7) becomes as follows

d

dξ
f̂(ξ) + 2πξf̂(ξ) = 0.

3) We have d
dξ
f̂(ξ) + 2πξf̂(ξ) = 0⇒ d

dξ
f̂(ξ) = −2πξf̂(ξ), which implies that

df̂(ξ)

f̂(ξ)
= −2πξdξ⇒

∫ df̂(ξ)

f̂(ξ)
=
∫
−2πξdξ⇒ ln( f̂(ξ)

c
) = −πξ2,

i.e.,
f̂(ξ) = ce−πξ

2

.

For ξ = 0, we have f̂(0) = c and f̂(0) =
∫
R f(x)dx,

which implies that

c =

∫
R
e−πx

2

dx

= 1,

i.e.,
f̂(ξ) = e−πξ

2

.
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CHAPTER 3

LAPLACE TRANSFORM

O ne of the most efficient methods for solving certain differential equations is to use the
Laplace transform . The Laplace transform transforms functions f(x) into other functions

F (s). We write
F = L(f) or F (s) = L(f(x))(s).

The inverse Laplace transform transforms F (s) into f(x). We write

f = L−1(F ) or f(x) = L−1(F (s))(x).

We will see later on which functions these transforms are defined. The essential property is
that, under certain conditions,

L(f ′(x))(s) = s · F (s).

Thus, differential equations become algebraic equations.

3.1 CL Functions

The class of real functions CL is formed by causal functions, piecewise continuous, and of ex-
ponential order.
• A function is causal if it is zero for x < 0, f(x) = 0 if x < 0.

• It continues piecewise if it only has points of discontinuity of the first kind (having a left limit
and a right limit).
• It is of exponential order if it is bounded by an exponential, i.e., if there exist real constants
M ≥ 0 and α such that

|f(x)| ≤Meαx, ∀x ≥ x0.

39
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• The usual functions sin(ωx), x2, ex are not causal, one way to create causal functions is to use
the Heaviside function

H(x) =

1, x ≥ 0

0, x < 0
.

For example the function f(x) = ex is not a causal function, but if we multiply it by H(x), we
have

f(x) = exH(x)

=

ex, x ≥ 0

0, x < 0
.

3.2 Definition of Laplace transform

Definition 3.1. The Laplace transform of a function of CL is defined by

L(f(x))(s) = F (s) =

∫ +∞

0

e−sxf(x)dx,

s is here a complex variable (frequency) and F (s) a complex function.

Remarks 3.1. 1) F (s) defined by an improper integral which does not always converge if f /∈
CL.
2) If f is discontinuous at 0, the lower bound of the integral should be denoted 0+.

Exercise 3.1. Calculate the Laplace transform of the following functions

1) f(x) = H(x)e2x =

e2x, x ≥ 0

0, x < 0
, 2) g(x) = H(x) =

1, x ≥ 0

0, x < 0
.

Solution 1) Let F (s) = L(f(x))(s), so

F (s) =

∫ +∞

0

e−sxf(x)dx

=

∫ +∞

0

e(2−s)xdx

=
1

2− s
[e(2−s)x]+∞0 .

Let s = α + iβ ⇒ e(2−s)x = e(2−α)xe−iβx, so

limx→+∞
∣∣e(2−s)x∣∣ = limx→+∞e

(2−α)x = 0 if α > 2, so
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F (s) =
1

2− s
[e(2−s)x]+∞0

=
1

2− s
(0− 1)

=
1

s− 2
,

i.e.,
F (s) =

1

s− 2
, Re(s) > 2.

2) Let G(s) = L(g(x))(s), so

G(s) =

∫ +∞

0

e−sxH(x)dx

=

∫ +∞

0

e−sxdx

=
−1

s
[e−sx]+∞0 .

Let s = α + iβ ⇒ e−sx = e−αxe−iβx, so

limx→+∞
∣∣e−sx∣∣ = limx→+∞e

−αx = 0 if α > 0, so

G(s) =
−1

s
[e−sx]+∞0

=
−1

s
(0− 1)

=
1

s
,

i.e.,
G(s) =

1

s
, Re(s) > 0.

Theorem 3.1. Let f be a function defined on R and such that

(i) f(x) = 0, ∀x < 0,

(ii) f is piecewise continuous on [0,+∞[,

(iii) there exist constants M ≥ 0 and r such that

∀x ≥ x0; |f(x)| ≤Merx.

So, the Laplace transform of f exists for all Re(s) > r.
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Proof. We have ∫ +∞

0

e−sxf(x)dx =

∫ x0

0

e−sxf(x)dx+

∫ +∞

x0

e−sxf(x)dx.

The integral
∫ x0

0
e−sxf(x)dx exists because f is piecewise continuous. As for the other integral,

note that

∣∣e−sxf(x)
∣∣ =

∣∣e−(α+iβ)xf(x)
∣∣

= e−αx |f(x)|

≤ Me−(α−r)x.

Now, the integral
∫ +∞
x0

Me−(α−r)xdx converges because Re(s) = α > r. Therefore, by the com-
parison test for improper integrals, the integral

∫ +∞
x0
|e−sxf(x)| dx also converges, which implies

that
∫ +∞
x0

e−sxf(x)dx exists. Consequently, the integral
∫ +∞

0
e−sxf(x)dx exists in the half-plane

{s ∈ C : Re(s) > r} .

Exercise 3.2. Compute the Laplace transform of

1) f(x) =

xn, x ≥ 0

0, x < 0
, n ∈ N.

Solution We have

F (s) =

∫ +∞

0

e−sx · xndx = In,

Using integration by parts, we obtain

In = [−x
n

s
e−sx]+∞0 +

n

s

∫ +∞

0

xn−1 · e−sxdx

=
n

s

∫ +∞

0

xn−1 · e−sxdx, car limx→+∞(−x
n

s
e−sx) = 0, si α > 0 avec s = α + iβ,

i.e.,
In =

n

s
· In−1.

By recurrence, we obtain

In =
n

s
· n− 1

s
× ...× 1

s
· I0,
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and

I0 =

∫ +∞

0

e−sxdx

=
1

s
, si α > 0.

So
In =

n

s
× n− 1

s
× ...× 1

s
× 1

s
, Re(s) > 0,

i.e.,

F (s) =
n!

sn+1
, Re(s) > 0.

3.3 Properties of the Laplace Transform

1) Linearity The Laplace transform is a linear operator. More precisely, for all α, β ∈ C, and for
all functions f, g with respective abscissas of summability r, σ, we have

L(αf(x) + βg(x))(s) = αF (s) + βG(s),

where F (s) = L(f(x))(s), G(s) = L(g(x))(s), and Re(s) > max(r, σ).

Proof. Indeed, if the functions f and g admit Laplace transforms

L(f(x))(s) = F (s) =

∫ +∞

0

e−sxf(x)dx, L(g(x))(s) = G(s) =

∫ +∞

0

e−sxg(x)dx,

then we have

L(αf(x) + βg(x))(s) =

∫ +∞

0

e−sx(αf(x) + βg(x))dx

= α

∫ +∞

0

e−sxf(x)dx+ β

∫ +∞

0

e−sxg(x)dx

= αF (s) + βG(s).

• If the abscissas of summability of f and g are r and σ respectively, then the domain of summa-
bility on which αf + βg is defined is {s ∈ C : Re(s) > max(r, σ)} .

2) Translation If L(f(x))(s) = F (s) with Re(s) > r, then

L(τaf)(s) = e−asF (s), Re(s) > r.

Where (τaf)(x) = f(x− a).

c©2022, FERAHTIA Nassim Integral transformations in Lp spaces



3.3. PROPERTIES OF THE LAPLACE TRANSFORM 44

Proof. We put g(x) =

f(x− a), x ≥ a

0, x < a
.

We have

L(g(x))(s) =

∫ +∞

0

e−sxg(x)dx

=

∫ a

0

e−sxg(x)dx+

∫ +∞

a

e−sxg(x)dx

=

∫ +∞

a

e−sxf(x− a)dx,

we put x− a = t⇔ dt = dx, so

L(g(x))(s) = e−as
∫ +∞

0

e−stf(t)dt

= e−asF (s).

Exercise 3.3. Find the Laplace transform of

f(x) =


0, x < 0

1, 0 < x < a

2, x > a

.

Solution We have f(x) = H(x) +H(x− a), where is the Heaviside function, and let
F (s) = L(f(x))(s), so F (s) = L(H(x))(s) + L(τaH)(s),
i.e.,

F (s) =
1

s
+ e−as · 1

s
, Re(s) > 0.

3) Property If F (s) = L(f(x))(s), then

L(f(x)e−αx)(s) = F (s+ α), Re(s+ α) > r.

Proof. We have

L(f(x)e−αx)(s) =

∫ +∞

0

e−sxf(x)e−αxdx

=

∫ +∞

0

e−(α+s)xf(x)dx

= F (s+ α).
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4) Change of scale If L(f(x))(s) = F (s), then

L(f(λx))(s) =
1

λ
F (

s

λ
), λ > 0.

Proof. We have

L(f(λx))(s) =

∫ +∞

0

e−sxf(λx)dx, on pose t = λx⇔ dt = λdx

=
1

λ

∫ +∞

0

e−
s
λ
tf(t)dt

=
1

λ
F (

s

λ
).

4) Complex conjugate If L(f(x))(s) = F (s), then

L(f(x))(s) = F (s)

Proof. We have

L(f(x))(s) =

∫ +∞

0

e−sxf(x)dx

=

∫ +∞

0

e−sxf(x)dx

= F (s).

Proposition 3.1. The Laplace transform of a locally integrable function f , is a holomorphic function in
the domain of summability {s ∈ C : Re(s) > r} and we have the formula

F (n)(s) =

∫ +∞

0

(−x)nf(x)e−sxdx = (−1)nL(xnf(x))(s).

Exercise 3.4. Determine the Laplace transform of xn, using the previous proposition.

Solution We have
L(xnf(x))(s) = (−1)nF (n)(s), ici f(x) = 1,

so we have
L(xn)(s) = (−1)n(

1

s
)(n), Re(s) > 0.
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Using the successive derivative of order n, we can demonstrate by recurrence that

(
1

s
)(n) =

n!

(−1)nsn+1
,

i.e.,

L(xn)(s) =
n!

sn+1
, Re(s) > 0.

3.4 Transform of the derivative

Theorem 3.2. If f ′ is piecewise continuous on all closed sets [0, x0] and if L(f(x))(s) = F (s) and if
there exist M > 0 and r such that |f(x)| ≤Merx, ∀x ≥ x0 then

L(f ′(x))(s) = sF (s)− f(0+), Re(s) > r.

Proof. We have

L(f ′(x))(s) =

∫ +∞

0

e−sxf ′(x)dx,

by integrating by parts we obtain

L(f ′(x))(s) = [e−sxf(x)]+∞0 + s

∫ +∞

0

e−sxf(x)dx.

As limx→+∞e
−sxf(x) = 0, because

limx→+∞
∣∣e−sxf(x)

∣∣ = limx→+∞e
−αx |f(x)| , s = α + iβ

≤ limx→+∞Me(r−α)x = 0, with Re(s) > r.

So, [e−sxf(x)]+∞0 = −f(0+.
f(0+) representing the right limit of f(x) when x→ 0.

Hence
L(f ′(x))(s) = sF (s)− f(0+), Re(s) > r.

Generalization If f ′′ also satisfies the assumptions of the theorem, then we have

L(f ′′(x))(s) = sL(f ′(x))(s)− f ′(0+)

= s(sF (s)− f(0+))− f ′(0+),
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hence
L(f ′′(x))(s) = s2F (s)− sf(0+)− f ′(0+).

•We can demonstrate by recurrence that

L(f (n)(x))(s) = snF (s)− sn−1f(0+)− sn−2f ′(0+)− ...− sf (n−2)(0+)− f (n−1)(0+).

Special case If f(0+) = f ′(0+) = ... = f (n−1)(0+) = 0, we have

L(f (n)(x))(s) = snF (s).

Remark 3.1. In general, if f(x) is discontinuous at points x1, x2, ..., xn, then

L(f ′(x))(s) = sF (s)− f(0+)−
n∑
k=1

e−sxk(f(x+
k )− f(x−k )).

Proposition 3.2. If L(f(x))(s) = F (s), then

L(

∫ x

0

f(t)dt)(s) =
F (s)

s
, Re(s) > max(0, r).

Proof. Let g(x) =
∫ x

0
f(t)dt. From the previous result, we have

L(g′(x))(s) = sL(g(x))(s)− g(0+)

= sL(g(x))(s),

Since g(0) = 0, and g′(x) = f(x), it follows that L(g(x))(s) = L(f(x))(s). We then deduce that
sL(g(x))(s) = L(f(x))(s).

i.e.,

L(

∫ x

0

f(t)dt)(s) =
L(f(x))(s)

s

=
F (s)

s
.

3.5 Inverse Laplace transform

Let F (s) be the Laplace transform of a function f(x). We call the inverse Laplace transform, or
the original of F (s), the function f(x), and we denote f(x) = L−1(F (s))(x).
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Example 3.1. 1) L−1( 1
s2

)(x) = xH(x).
2) L−1( s

s2+4
)(x) = cos(2x)H(x), because L(cos(ax))(s) = s

s2+a2
.

• It can be shown that if the functions f considered satisfy the properties stated at the beginning
of the chapter, i.e.,
• A causal function.
• Piecewise continuous on every closed interval [0, x0].
• Of exponential order.
Then the original function f(x) of a given function F (s) is unique on any subset where it is
continuous.
The search for the original leads to the study of the properties of the mapping F (s)

L−1

→ f(x),
called the inverse Laplace transform.

3.6 Properties of the inverse Laplace transform

1) Linearity Since the inverse of a linear operator is also linear, we have

L−1(αF (s) + βG(s))(x) = αL−1(F (s))(x) + βL−1(G(s))(x).

• In general, to find the original function corresponding to a rational function F (s) = N(s)
D(s)

, one
uses its partial fraction decomposition.

Exercise 3.5. Find the original of F (s) = s+1
s2(s2+4)

.

Solution The decomposition of F (s) is written as

s+ 1

s2(s2 + 4)
=
A

s2
+
B

s
+
cs+ d

s2 + 4
,

and the computation yields A = 1
4
, B = 1

4
, c = −1

4
, d = −1

4
,

Hence,

f(x) =
1

4
L−1(

1

s2
)(x) +

1

4
L−1(

1

s
)(x)− 1

4
L−1(

s

s2 + 4
)(x)− 1

4
L−1(

1

s2 + 4
)(x),

i.e.,
f(x) = (

1

4
+

1

4
x− 1

4
cos(2x)− 1

8
sin(2x))H(x).

2) Original of F (as), a > 0 Let f(x) be the original of F (s), i.e., f(x) = L−1(F (s))(x), we have

F (as) =

∫ +∞

0

e−asxf(x)dx, y = ax ⇔ dy = adx

=
1

a

∫ +∞

0

e−syf(
y

a
)dy,
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hence,

F (as) =
1

a
L(f(

x

a
))(s)

= L(
1

a
f(
x

a
))(s),

i.e.,
L−1(F (as))(x) =

1

a
f(
x

a
).

3) Original of F (s+ a) Let f(x) = L−1(F (s))(x). Then,

F (s+ a) =

∫ +∞

0

e−(s+a)xf(x)dx

=

∫ +∞

0

e−sx(e−axf(x))dx

= L(e−axf(x))(s),

hence,
L−1(F (s+ a))(x) = e−axf(x).

Example 3.2. 1) L−1( s+a
(s+a)2+a2

)(x) = e−ax cos(ax), x ≥ 0

2) L−1( a
(s+a)2+a2

)(x) = e−ax sin(ax), x ≥ 0

Exercise 3.6. Find the original of F (s) = s
s2+s+1

Solution We can write

s

s2 + s+ 1
=

s

(s+ 1
2
)2 + 3

4

=
s+ 1

2

(s+ 1
2
)2 + 3

4

− 1

2

1

(s+ 1
2
)2 + 3

4

,

therefore,

f(x) = L−1(
s+ 1

2

(s+ 1
2
)2 + 3

4

)(x)− 1

2
L−1(

1

(s+ 1
2
)2 + 3

4

)(x),

i.e.,

f(x) = e−
1
2
x cos(

√
3

2
x)− 1√

3
e−

1
2
x sin(

√
3

2
x), x ≥ 0.

4) Original of F (s)×G(s)

Theorem 3.3. If L−1(F (s))(x) = f(x) and L−1(G(s))(x) = g(x), then

L−1(F (s)×G(s))(x) =

∫ x

0

f(t)g(x− t)dt,
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the integral
∫ x

0
f(t)g(x− t)dt is called the convolution product of f by g and is denoted (f ? g)(x)

•We easily verify that (f ? g)(x) = (g ? f)(x).

Exercise 3.7. Find the original of F (s) = 1
s2(s+1)

Solution Let f(x) = L−1(F (s))(x), we have

L−1(
1

s2
)(x) = x et L−1(

1

s+ 1
)(x) = e−x,

hence

L−1(
1

s2(s+ 1)
)(x) = L−1(

1

s2
· 1

s+ 1
)(x)

=

∫ x

0

te−(x−t)dt,

i.e.,
f(x) = e−x + x− 1, x ≥ 0.

3.7 Table of Some Common Functions

The table below gives some Laplace transforms of common functions.

f(x) = L−1(F (s))(x) F (s) = L(f(x))(s)

H(x) 1
s
, Re(s) > 0

eax 1
s−a , Re(s) > a

sin(ax) a
s2+a2

, Re(s) > 0

cos(ax) s
s2+a2

, Re(s) > 0

xα, α > −1 Γ(α+1)
sα+1 , Re(s) > 0

xn, n ∈ N n!
sn+1 , Re(s) > 0

f(ax) 1
a
F ( s

a
)

e−axf(x) F (s+ a)

f(x− a)H(x− a) e−asF (s)

3.8 Application of the Laplace transform to differential equa-

tions

Let us consider the linear differential equation with constant coefficients

any
(n)(x) + an−1y

(n−1)(x) + ...+ a0y(x) = f(x).
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Let L(y(x))(s) = Y (s). Then,

L(y′(x))(s) = sY (s)− y(0) et L(y′′(x))(s) = s2Y (s)− sy(0)− y′(0),

and more generally,

L(y(n)(x))(s) = snY (s)− sn−1y(0)− ...− y(n−1)(0).

By applying the Laplace transform to the above differential equation, and using linearity, we
obtain

(ans
n + an−1s

n−1 + ...+ a0)Y (s) + φ(s) = F (s),

where φ(s) is a polynomial of degree at most (n − 1), involving the initial conditions
y(0), y′(0), ..., y(n−1)(0). It follows that

Y (s) =
F (s)− φ(s)

ansn + an−1sn−1 + ...+ a0

,

and consequently, by applying the inverse Laplace transform,

y(x) = L−1(Y (s))(x).

Exercise 3.8. Find the solution to the following differential equation

y′′ − 2y′ + y = xex, y(0) = 1, y′(0) = 0. (3.1)

Solution Let L(y(x))(s) = Y (s), so L(y′(x))(s) = sY (s) − y(0) = sY (s) − 1, L(y′′(x))(s) =

s2Y (s)− sy(0)− y′(0) = s2Y (s)− s.
Applying the Laplace transform to the equation (3.1), we obtain

L(y′′(x))(s)− 2L(y′(x))(s) + L(y(x))(s) = L(xex)(s),

which implies that

s2Y (s)− s− 2sY (s) + 2 + Y (s) =
1

(s− 1)2
,

i.e.,
Y (s) =

1

(s− 1)4
− 1

(s− 1)2
+

1

s− 1
,

applying the inverse Laplace transform, we obtain

y(x) = ex(
1

6
x3 − x+ 1).
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3.9 Solving integral equations

The Laplace transform allows the study of a large number of integral equations.
• A Volterra integral equation of the second kind is an equation of the form

ϕ(x)−
∫ x

0

k(x, t)ϕ(t)dt = g(x),

where g, k are known functions and ϕ an unknown function, the function k is the kernel of
this equation. We consider the case where the kernel depends only on the difference x− t, i.e.,
k(x, t) = k(x − t) with k with support in R+. Let F,G and K be the Laplace transforms of ϕ, g
and k, respectively. Applying the Laplace transform to both sides of the above equation, we
obtain

L(ϕ(x))(s)− L
(∫ x

0

k(x− t)ϕ(t)dt

)
(s) = L(g(x))(s),

so we have
L(ϕ(x))(s)− L ((k ? ϕ)(x)) (s) = L(g(x))(s),

hence
F (s)−K(s)F (s) = G(s),

hence
F (s) =

G(s)

1−K(s)
, K(s) 6= 1.

The original ϕ(x) of F (s) is the solution to the integral equation.

Exercise 3.9. Determine the solution to the following integral equation

ϕ(x)−
∫ x

0

sin(x− t)ϕ(t)dt = x2. (3.2)

Solution Let F (s) = L(ϕ(x))(s).
The equation (3.2) is written in the form

ϕ(x)− sin(x) ? ϕ(x) = x2, x ≥ 0.

Applying the Laplace transform to both sides, we have

F (s)− 1

s2 + 1
F (s) =

2

s3
, Re(s) > 0,

i.e.,
F (s) =

2

s5
+

2

s3
, Re(s) > 0.
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By consequently

ϕ(x) = L−1(F (s))(x) =
1

12
x4 + x2.

3.10 Solving partial differential equations

The Laplace transform method can be used to solve certain partial differential equations, as
shown in the following example

Example 3.3. Solve the following equation

∂u

∂t
=
∂2u

∂x2
, with

u(x, 0) = sin(x), u(0, t) = 0, u(π, t) = 0, 0 < x < π, t > 0.

Solution Let U(x, s) = L(u(x, t))(s) be the Laplace transform of u(x, t). We have

L(
∂u(x, t)

∂t
)(s) = L(

∂2u(x, t)

∂x2
)(s). (3.3)

We have L(∂u
∂t

)(s) =
∫ +∞

0
e−st ∂u(x,t)

∂t
dt and since L(f ′(x))(s) = sF (s)− f(0), then

L(
∂u

∂t
)(s) = sU(x, s)− u(x, 0) = sU(x, s)− sin(x),

and

L(
∂2u

∂x2
)(s) = L(

∂v

∂x
)(s), v =

∂u

∂x

=

∫ +∞

0

e−st
∂v(x, t)

∂x
dt

=
∂

∂x

∫ +∞

0

e−stv(x, t)dt

=
∂

∂x

∫ +∞

0

e−st
∂u(x, t)

∂x
dt

=
∂2

∂x2

∫ +∞

0

e−stu(x, t)dt

=
∂2U(x, s)

∂x2
,

then the equation (3.3) becomes

∂2U(x, s)

∂x2
= sU(x, s)− sin(x),
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i.e.,
∂2U(x, s)

∂x2
− sU(x, s) = − sin(x).

This is a second-order differential equation with constant coefficient, so the solution is

U(x, s) = yH(x) + yp(x).

The homogeneous equation is

(H) :
∂2U(x, s)

∂x2
− sU(x, s) = 0,

the characteristic equation is r2 − s = 0⇒ r1 =
√
s, r2 = −

√
s, so we have

yH(x) = c1e
√
sx + c2e

−
√
sx, c1, c2 ∈ R and yp(x) =

sin(x)

1 + s
,

then the general solution is

U(x, s) = c1e
√
sx + c2e

−
√
sx +

sin(x)

1 + s
, c1, c2 ∈ R.

We have U(0, s) = c1 + c2 and U(π, s) = c1e
√
sπ + c2e

−
√
sπ, on the other hand we have

U(0, s) =
∫ +∞

0
e−stu(0, t)dt = 0,

i.e.,
c1 + c2 = 0. (3.4)

And U(π, s) =
∫ +∞

0
e−stu(π, t)dt = 0

i.e.,
c1e
√
sπ + c2e

−
√
sπ = 0. (3.5)

From equation (3.4) and equation (3.5), we obtain

c1 = c2 = 0.

Then the general solution is

U(x, s) =
sin(x)

1 + s
.

Applying the inverse Laplace transform, then we have

u(x, t) = L−1(U(x, s))(t)

= L−1(
sin(x)

1 + s
)(t)

= e−t sin(x).
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Exercise 3.10. Given the Gamma function

Γ(x) =

∫ +∞

0

tx−1e−tdt, x > 0.

1) Show that Γ(x+ 1) = xΓ(x) and Γ(n+ 1) = n!, n ∈ N.
2) Calculate the Laplace transform of the function xαH(x), whereH(x) is the Heaviside function
and α > −1.

3) Deduce L(xnH(x))(s).
4) Calculate L(

√
x)(s).

Solution 1) We have

Γ(x+ 1) =

∫ +∞

0

txe−tdt

= [−txe−t]+∞0 + x

∫ +∞

0

tx−1e−tdt, by part

= xΓ(x).

And

Γ(n+ 1) = nΓ(n)

= n(n− 1)Γ(n− 1)

= n(n− 1)× ...× 2× 1× Γ(1),

and Γ(1) =
∫ +∞

0
e−tdt = 1, which implies that Γ(n+ 1) = n! .

2) We have

L(xαH(x))(s) =

∫ +∞

0

e−sx · xαdx, we put sx = t ⇔ dt = sdx

=

∫ +∞

0

e−t(
t

s
)α
dt

s

=
1

sα+1
· Γ(α + 1).

3) If α = n, we have

L(xnH(x))(s) =
Γ(n+ 1)

sn+1

=
n!

sn+1
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4) If α = 1
2
, we have

L(
√
x)(s) =

Γ(1
2

+ 1)

s
3
2

=
1
2
Γ(1

2
)

s
3
2

.

we have

Γ(
1

2
) =

∫ +∞

0

t−
1
2 e−tdt, we put t = x2 ⇔ dt = 2xdx

= 2

∫ +∞

0

e−x
2

dx

= 2 ·
√
π

2
=
√
π.

So
L(
√
x)(s) =

√
π

2s
3
2

.
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