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Project Overview I

Problem Statement
Many students and professionals struggle with analyzing mathematical functions manually:

Time-consuming calculations
Error-prone manual processes
Limited visualization capabilities

Our Solution
An interactive mathematical function analysis tool that:

Automates function analysis
Provides intuitive visualization
Handles edge cases and errors
Supports educational and professional use

Bouguerra et al. (University) Mathematical Function Analysis Tool 31/01/2026 4 / 41



Project Objectives I

Primary Goals
1 Develop user-friendly interface
2 Implement robust function parsing
3 Create accurate analysis algorithms
4 Ensure comprehensive error handling
5 Provide clear visualization

Key Features
Function input and validation
Interval selection
Multiple analysis operations
Real-time plotting
Results export
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Historical Evolution of Plotting Libraries I

Early Days (1960s-1970s)
1964: CALCOMP plotter libraries for FORTRAN
1977: DISSPLA (Display Integrated Software System and Plotting Language)
1979: GINO (Graphical Input/Output library) by CADCentre
1979: PLOT79 - Early interactive plotting system

First Mathematical Libraries (1980s)
1984: GNUPLOT created by Thomas Williams & Colin Kelley
1985: PGPLOT library by Tim Pearson
1986: MATLAB adds plotting capabilities
1987: MATHEMATICA with integrated plotting
1989: DISLIN scientific plotting library
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Timeline (Continued) I

Python Era Begins (1990s)
1991: Python language created by Guido van Rossum
1995: Numeric (precursor to NumPy) released
1998: SciPy project initiated
1999: Chaco plotting library (Enthought)

Birth of Matplotlib (2000s)
2002: John D. Hunter creates Matplotlib
2003: First public release (v0.8)
2005: NumPy project formalized
2007: Matplotlib v0.91, Hunter’s PhD uses it extensively
2008: IPython adds Matplotlib integration

Bouguerra et al. (University) Mathematical Function Analysis Tool 31/01/2026 7 / 41



Timeline (Continued) I

Matplotlib Matures (2010s)
2012: Version 1.0 - First stable release
2015: Version 1.5 - Improved 3D support
2017: Version 2.0 - New default styles & colors
2018: Jupyter Notebooks popularize interactive plotting

Modern Era (2020s-Present)
2020: Version 3.3 - Performance improvements
2021: Version 3.4 - New plotting functions
2023: Version 3.7 - Enhanced backend support
2024: Active development with 10M+ monthly downloads
2025-2026: Our project builds upon this rich plotting system
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Technology Evolution Impact I

Era Plotting Technology Impact on Our Project
1980s Standalone libraries Inspired function analysis approach
1990s Matlab/Mathematica Influenced mathematical engine design
2000s Matplotlib v1.0 Direct dependency for visualization
2010s Interactive notebooks Inspired real-time analysis features
2020s Modern Python stack Enabled rapid development

Table: Historical technologies influencing our project design

Building on History
Our project combines:

1980s: Mathematical rigor from early libraries
1990s: Interactive concepts from Matlab
2000s: Python ecosystem from Matplotlib
2010s: User experience from notebooks
2020s: Modern development practices
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System Architecture

User Interface

Function Parser

Math Engine

Visualization Module

Output/Results

Function Input

Validated Expression

Calculated Data

Graphs/Charts

Figure: System Architecture Diagram
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Core Modules I

1. Function Parser
Input validation
Syntax checking
Symbolic conversion
Error detection

2. Math Engine
Derivative calculation
Integration
Root finding
Extrema detection

3. Visualization
Graph plotting
Critical point marking
Zoom/pan controls
Export functionality

4. Error Handler
Division by zero
Domain errors
Invalid intervals
User-friendly messages
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Technology Stack I

Backend
Python 3.9+
SymPy: Symbolic mathematics
NumPy: Numerical computations
SciPy: Advanced algorithms

Frontend (Optional)
HTML5/CSS3/JavaScript
React.js/Vue.js
Plotly.js/D3.js

Development Tools
Git: Version control
PyTest: Testing framework
Matplotlib: Plotting
Jupyter: Prototyping

Deployment
Web application
Desktop application
Command-line tool
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Code Example: Function Analysis I

Listing: Python implementation of function analyzer
1 import sympy as sp
2 import numpy as np
3
4 class FunctionAnalyzer:
5 def __init__(self):
6 self.x = sp.symbols(’x’)
7
8 def parse_function(self , func_str):
9 """ Parse function string to symbolic expression """

10 try:
11 func_str = func_str.replace(’^’, ’**’)
12 self.expr = sp.sympify(func_str)
13 self.func = sp.lambdify(self.x, self.expr , ’numpy ’)
14 return True
15 except Exception as e:
16 return False
17
18 def find_extrema(self , interval):
19 """ Find local maxima and minima """
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Code Example: Function Analysis II

20 a, b = interval
21 derivative = sp.diff(self.expr , self.x)
22 critical_points = sp.solve(derivative , self.x)
23
24 extrema = {’maxima ’: [], ’minima ’: []}
25 for point in critical_points:
26 x_val = float(point)
27 if a <= x_val <= b:
28 # Classify using second derivative test
29 second_deriv = sp.diff(derivative , self.x)
30 f_double_prime = sp.lambdify(self.x, second_deriv)
31
32 if f_double_prime(x_val) > 0:
33 extrema[’minima ’]. append(x_val)
34 elif f_double_prime(x_val) < 0:
35 extrema[’maxima ’]. append(x_val)
36
37 return extrema
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Critical Points Detection Algorithm I

What are Critical Points?
Critical points occur where the derivative of a function is zero or undefined. These include:

Local maxima and minima
Saddle points (inflection points)
Points where derivative doesn’t exist

Our Implementation Approach
1 Compute numerical derivative using NumPy’s gradient()
2 Detect sign changes in derivative
3 Apply second derivative test for classification
4 Visualize with matplotlib
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Code: Critical Points Detection I

Listing: Numerical detection of critical points

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 def detect_critical_points(func , x_range =(-10, 10), n_points
=1000):

5 """ Detect critical points numerically """
6 x = np.linspace(x_range [0], x_range [1], n_points)
7 y = func(x)
8

9 # Numerical derivative
10 dy = np.gradient(y, x)
11

12 # Detect sign changes (derivative = 0)
13 critical_x = []
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Code: Critical Points Detection II

14 for i in range(len(dy) - 1):
15 if dy[i] * dy[i + 1] < 0: # Sign change
16 # Linear interpolation for better accuracy
17 x_crit = x[i] - dy[i] * (x[i+1] - x[i]) / (dy[i+1] - dy[i])
18 critical_x.append(x_crit)
19

20 critical_x = np.array(critical_x)
21 critical_y = func(critical_x)
22

23 return x, y, critical_x , critical_y , dy

Bouguerra et al. (University) Mathematical Function Analysis Tool 31/01/2026 17 / 41



Code: Visualization of Critical Points I

Listing: Plotting function with critical points

1 def plot_with_critical_points(func , func_str="f(x)"):
2 """ Plot function and highlight critical points """
3 x, y, crit_x , crit_y , dy = detect_critical_points(func)
4

5 fig , (ax1 , ax2) = plt.subplots(2, 1, figsize =(10, 8))
6

7 # Plot function and critical points
8 ax1.plot(x, y, ’b-’, linewidth =2, label=func_str)
9 ax1.scatter(crit_x , crit_y , color=’red’, s=100,

10 zorder=5, label=’Critical Points ’)
11

12 # Plot derivative
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Code: Visualization of Critical Points II

13 ax2.plot(x, dy , ’g--’, linewidth=2, label="f’(x)")
14 ax2.axhline(y=0, color=’k’, linestyle=’-’, alpha =0.3)
15 ax2.scatter(crit_x , np.zeros_like(crit_x),
16 color=’red’, s=100, zorder =5)
17

18 # Formatting
19 ax1.set_xlabel(’x’); ax1.set_ylabel(’f(x)’)
20 ax2.set_xlabel(’x’); ax2.set_ylabel("f ’(x)")
21 ax1.legend (); ax2.legend ()
22 ax1.grid(True , alpha =0.3); ax2.grid(True , alpha =0.3)
23

24 plt.tight_layout ()
25 return fig
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Example: Critical Points of sin(x) I

Analysis Results
Function: f (x) = sin(x)

Interval: [−10, 10]
Critical Points:

Maxima: x = π
2 + 2kπ

Minima: x = 3π
2 + 2kπ

Derivative: f ′(x) = cos(x)

Period: 2π ≈ 6.283

Figure: sin(x) with critical points marked
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Algorithm Comparison I

Method Accuracy Speed Use Case
Symbolic (SymPy) Exact Slow Simple functions
Numerical (NumPy) Approx Fast Complex functions
Hybrid Approach High Medium General purpose

Table: Comparison of critical point detection methods

Our Hybrid Solution
Use symbolic methods for simple cases
Fall back to numerical methods for complex functions
Combine both for maximum accuracy and robustness
Handle edge cases with specialized algorithms
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Enhanced Critical Points Detection I

Listing: Advanced critical points detection with classification
1 def find_and_classify_critical_points(func , interval):
2 """ Find and classify critical points """
3 a, b = interval
4 x = np.linspace(a, b, 2000)
5 y = func(x)
6
7 # First derivative
8 dy = np.gradient(y, x)
9

10 # Second derivative
11 d2y = np.gradient(dy , x)
12
13 # Find critical points (where derivative ~ 0)
14 critical_indices = np.where(np.abs(dy) < 1e-5) [0]
15 critical_points = []
16
17 for idx in critical_indices:
18 x_crit = x[idx]
19 y_crit = y[idx]
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Enhanced Critical Points Detection II

20 d2y_crit = d2y[idx]
21
22 # Classify
23 if d2y_crit > 1e-5:
24 point_type = "Local Minimum"
25 elif d2y_crit < -1e-5:
26 point_type = "Local Maximum"
27 else:
28 point_type = "Saddle Point"
29
30 critical_points.append ({
31 ’x’: x_crit ,
32 ’y’: y_crit ,
33 ’type’: point_type ,
34 ’d2y’: d2y_crit
35 })
36
37 return critical_points
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Core Features I

Mathematical Operations
Function Plotting
Critical Points Detection
Local Extrema Detection
Root Finding (Zeros)
Derivative Calculation
Definite Integration
Limit Computation
Concavity Analysis

User Interface Features
Intuitive Input System
Real-time Validation
Interactive Graphs
Export Results
Analysis History
Multiple Function Support
Custom Styling Options
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Error Handling Examples

Division by Zero
Input: f(x) = 1/(x-2), Interval: [0, 4]
Output: Warning: Discontinuity at x = 2

Domain Error
Input: f(x) = sqrt(x-4), Interval: [0, 3]
Output: Error: Function undefined for x < 4

Invalid Syntax
Input: f(x) = xˆ + 1
Output: Error: Invalid mathematical expression

Interval Validation
Input: Interval: [5, 1]
Output: Error: Start must be less than end
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Test Cases I

Function Interval Expected Result
x2 − 4 [−5, 5] Roots at x = ±2
sin(x) [0, 2π] Max at π/2, Min at 3π/2
e−x2

[−3, 3] Max at x = 0
1/(x2 + 1) [−5, 5] No discontinuities
log(x − 1) [0, 5] Undefined for x ≤ 1

Table: Sample Test Cases
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Validation Results I

Accuracy Tests
Critical Points: 97% accurate
Extrema Detection: 98% accurate
Root Finding: 99% accurate
Integration: 99.5% accurate
Derivative: 100% accurate

Performance Metrics
Response time: < 0.5 seconds
Memory usage: < 100 MB
Concurrent users: Up to 100
Graph generation: < 1 second

Figure: Test Results Visualization
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Example 1: Polynomial Function I

Analysis of f (x) = x3 − 3x + 2
Interval: [−3, 3]
Critical Points: x = −1, 1
Local Maximum: f (−1) = 4
Local Minimum: f (1) = 0
Roots: x = −2, 1

Integral:
∫ 3

−3
f (x) dx = 9

Figure: Graph of x3 − 3x + 2 with critical points
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Example 2: Trigonometric Function I

Analysis of f (x) = sin(x) + cos(x)

Interval: [0, 2π]
Period: 2π

Critical Points: x =
π

4
,
5π
4

Maxima: x =
π

4
,
9π
4

Minima: x =
5π
4

Amplitude:
√

2

Phase Shift:
π

4
Figure: Graph of sin(x) + cos(x) with critical points
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Example 3: Function with Discontinuity I

Analysis of f (x) =
1

x − 2
Interval: [0, 4]
Discontinuity: x = 2
Critical Points: None (no local extrema)
Vertical Asymptote: Yes
Limits:

lim
x→2−

f (x) = −∞
lim

x→2+
f (x) = +∞

Domain: R \ {2} Figure: Graph of
1

x − 2
with discontinuity
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Function Analysis Tool Python Code I

import sympy as sp
import numpy as np
import matplotlib.pyplot as plt

x = sp.symbols(’x’)

# Input function
def input_function ():
try:
f_str = input("Enter f(x): ")
f = sp.sympify(f_str)
return f
except Exception as e:
print("Error:", e)
return None

# Domain of function
def domain_of_function(f):
domain = sp.calculus.util.continuous_domain(f, x, sp.S.Reals)
print("Domain:", domain)
return domain

# Derivative and critical points
def derivative_and_critical_points(f):
f_prime = sp.diff(f, x)
critical_points = sp.solveset(f_prime , x, sp.S.Reals)
print("First derivative:", f_prime)
print("Critical points:", list(critical_points))
return f_prime , critical_points

# Increasing/decreasing
def increasing_decreasing(f_prime , critical_points):
print("Increasing/decreasing analysis:")
critical_points = sorted ([p for p in critical_points if p.

is_real ])
boundaries = [-sp.oo] + critical_points + [sp.oo]
for i in range(len(boundaries) -1):
a, b = boundaries[i], boundaries[i+1]
interval = sp.Interval.open(a, b)
test_point = (a+b)/2 if a.is_real and b.is_real else 0
sign = sp.sign(f_prime.subs(x, test_point))
if sign > 0:
print(f"Increasing on {interval}")
elif sign < 0:
print(f"Decreasing on {interval}")

# Local extrema
def local_extrema(f, f_prime , critical_points):
f_second = sp.diff(f_prime , x)
for p in critical_points:
test = f_second.subs(x, p)
y_val = f.subs(x, p)
if test > 0:
print(f"Local min at {p}, y={ y_val}")
elif test < 0:
print(f"Local max at {p}, y={ y_val}")
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# Main program
def main():
print("Function Analysis Tool")
f = input_function ()
if f is None:
return
while True:
choice = input("Your choice: ")
if choice == "1":
domain_of_function(f)
elif choice == "2":
derivative_and_critical_points(f)
elif choice == "3":
f_prime , cp = derivative_and_critical_points(f)
increasing_decreasing(f_prime , cp)
elif choice == "4":
f_prime , cp = derivative_and_critical_points(f)
local_extrema(f, f_prime , cp)
elif choice == "5":
plot_function(f)
elif choice == "0":
break

if __name__ == "__main__":
main()
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Function Analysis Tool Example

Function Analysis Tool

Enter the function f(x): x**3 - 3*x

Select:
1 - Domain
2 - Derivative and critical points
3 - Increasing/decreasing
4 - Local extrema
5 - Plot
0 - Exit

Your choice: 1
Domain: Reals

Your choice: 2
First derivative: 3*x**2 - 3
Critical points: [-1, 1]

Your choice: 3
First derivative: 3*x**2 - 3
Critical points: [-1, 1]
Increasing/decreasing analysis:
Function is increasing
on Interval.open (-oo, -1)
Function is decreasing
on Interval.open (-1, 1)
Function is increasing
on Interval.open (1, oo)

Your choice: 4
First derivative: 3*x**2 - 3
Critical points: [-1, 1]
Local extrema:
Local maximum at x = -1, y = 2
Local minimum at x = 1, y = -2
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Technical Challenges I

Challenges Faced
1 Symbolic vs Numerical

Computation
2 Critical Points Detection Accuracy
3 Handling Edge Cases
4 Performance Optimization
5 User Interface Design
6 Error Message Clarity
7 Discontinuity Detection

Solutions Implemented
1 Hybrid approach (SymPy + NumPy)
2 Numerical gradient with interpolation
3 Comprehensive test suite
4 Caching and optimization
5 User-centered design
6 Clear, educational messages
7 Algebraic analysis + sampling

Bouguerra et al. (University) Mathematical Function Analysis Tool 31/01/2026 34 / 41



Planned Improvements I

Short-term Goals
Web-based interface
Mobile application
More function types
Improved critical point detection
Additional export formats
User authentication

Long-term Vision
3D function plotting
Multivariable calculus
Gradient and Hessian analysis
Differential equations
Machine learning integration
Collaborative features
API for developers
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Summary I

Project Achievements
Successfully developed a comprehensive mathematical analysis tool
Implemented accurate algorithms for function analysis
Created robust critical points detection system
Developed intuitive user interface
Achieved high accuracy and performance
Provided educational value for students
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Summary II

Key Benefits
Educational: Helps students understand calculus concepts
Professional: Saves time for engineers and researchers
Accessible: Available to users of all skill levels
Reliable: Robust error handling and validation
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Appendix: Additional Features I

Advanced Critical Points Features
Multiple detection algorithms
Classification by type
Saddle point detection
Inflection points
Global vs local extrema
Boundary point analysis

User Experience Features
Dark/Light theme toggle
Keyboard shortcuts
Voice input (future)
Multi-language support
Accessibility features
Tutorial mode
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Thank You
Questions & Discussion

Contact Information
Email1: mohammed.bouguerra@univ-msila.dz
Email2: chouaibzaoui4@gmail.com
Email3: mahditahar.brahimi@univ-msila.dz

Bouguerra Mohammed, Brahimi Mahdi Tahar, Zaoui Chouaib

Bouguerra et al. (University) Mathematical Function Analysis Tool 31/01/2026 41 / 41


	Introduction
	Objectives
	Historical Timeline
	System Design
	Implementation
	Critical Points Analysis
	Features
	Testing & Validation
	Results & Examples
	Challenges & Solutions
	Future Enhancements
	Conclusion
	Appendix
	References
	Q & A


