
Fault-tolerant Communications by reservation-based
protocol in IoT network

1st Boudaa Abdelghani
Département d’informatique (Faculté de M.I.)

Université Med BOUDIAF (M’sila)
M’sila, Algerié

ghani.boudaa@gmail.com

2nd Belouadah Hocine
Département de Sciences Exactes

Ecole Normale Supérieure (Bou Saada)
Bou Saada, Algerié

r belouadah74@yahoo.fr

Abstract—The Internet of things (IoT) consists of a great
number of heterogeneous nodes. Things are equipped with data
processing and communication capabilities. These things are
useful in a wide range of applications Such applications smart
energy,smart health etc., so they use the permutation protocol
and make our daily life smarter. Among the most important
problems related to the IoT, there are constraints of energy and
fault tolerance. Thus, we designed a protocol that provides fault-
tolerant communications by use of reservation-based protocol.

Index Terms—Internet of things, Single-hop networks, Permu-
tation Routing, Parallel broadcasting, reservation-based protocol,
Energy-efficiency, fault-tolerant communications

I. INTRODUCTION

Internet of Things is a collection of entities which can be
physical devices, animals, people, electronic devices etc. IoT
is now becoming a vital instrument to interconnect devices.
IoT Communication over the internet has grown from user-
user interaction to devicedevice interactions these days [5].
As said Lakhlef et al. [13], IoT will occupy a place of choice
in our everyday life.

The permutation routing problem is a useful abstraction
for most routing problems in distributed systems [7]. Each
node must send information from its own memory to allow its
neighbours to progress, while minimizing the total number of
retransmissions.

The nodes are devices running on batteries and the batteries
cannot be recharged while on a mission [3]. Indeed, due to the
resources limitation, a solution for an application in Internet
of things should take into account the restrained capabilities
of these heterogeneous devices [10], [9], [4].

CSMA (Carrier Sense Multiple Access) is a simple and
robust random access method for wireless networks [?].
However, a fraction of the available bandwidth is wasted
for resolving random conflicts of messages [8]. Fine et al.
[18] proposed DAMA (Demand Assignment Multiple Access)
for transmission networks. This protocol provides conflict-free
transmission using distributed access protocols with bounded
delay. The main idea behind the DAMA scheme is that the
nodes that wish broadcast on a given channel are ordered in
a logical ring, according to which they are granted broadcast
access to the channel [18]. Sivalingam et al. [6] have found that
the CSMA protocol requires higher energy consumption than

the DAMA protocols. In a DAMA or reservation-based proto-
col, collisions are avoided by reserving channels. Nakano [14]
uses a local clock that synchronizes the time by interfacing
with a GPS(Global Positioning System). Time is divided into
slots and all packets transmissions take place at slot boundaries
[1], [2].

In this paper, we are interested in designing a fault-tolerant
reservation-based DAMA protocol for permutation routing in
the IoT where each node is within the transmission range of
all other nodes and the mobility duration is weaker than the
time taken by a protocol to complete.

II. RELATED WORKS

Recently, the permutation routing problem has been ex-
plored for wireless networks in several papers [16]. We refer
the reader to Fig. 1 for an illustration of the permutation
routing problem with n = 32 items and p = 8 stations.
For simplicity, for each item, we only indicate its destination
station. As an example, station S(1) initially stores n

p = 4
items destined to stations S(3), S(5), S(6) and S(8). As in

S(1)

3 5 6 8

S(2)

387 4

S(3)

6 5 7 5

S(4)

2 1 4 7

S(5)

7 1 6 8

S(6)

385 6

S(7)

4 2 4 2

S(8)

2 1 3 1

Initial

S(1)

1 1 1 1

S(2)

222 2

S(3)

3 3 3 3

S(4)

4 4 4 4

S(5)

5 5 5 5

S(6)

666 6

S(7)

7 7 7 7

S(8)

8 8 8 8

Final

Fig. 1. Permutation routing with p = 8 and n = 32

the paper by Nakano et al. [16], we are interested in designing
a reservation based DAMA protocol [18] for permutation
routing on a wireless networks. Nakano et al. [15] have

designed a protocol that runs in
2n

k
+k−1 time slots subject to

k, the number of channels, satisfying k ≤
√
p

2
. The protocol

by Nakano et al. [15] runs extremely fast at the expense of
high energy consumption, since each station must be awake

for
2n

k
+ k − 1 time slots. Datta and Zomaya [11] have

shown that the permutation routing problem of n packets on a
wireless network of p stations and k channels can be solved in
2n
k +(pk)

2 + p+2k2 slots and each station needs to be awake

for at most 6n
p + 2p

k + 8k slots. In [11], [16], they assume
that each station works correctly during its lifetime. If there
are faulty stations, the main problem with the protocols in
[11], [16] is that not fault-tolerant. Amitava Datta [7] assumes
that the routing protocol works correctly when there are faulty
stations. The fault-tolerant permutation routing in a WN(p, k)
can be takes 2n

k + (pk)
2 + p

k + 3p
2 + 2k2 − k slots.

III. CONTRIBUTIONS

The main contribution of this work is to present a protocol
for IoT which should work well even when some of nodes are
faulty and it should be energy efficient. We start by grouping
the T thing nodes according to number and memory spaces Mi

of the nodes ti. So, to optimize the diffusion, we use parallel
channels. Next, in every group, each thing node broadcasts its
items to destination agents. Finally we broadcast the items to
their final destination.
Outline of the paper: The rest of the paper is organized as
follows: Section 4 presents the preliminaries. We proposed
an overview of our routing protocol in Section 5. Next, we
present our permutation routing protocol in Section 6. Finally,
our conclusions and are given in section 7.

IV. PRELIMINARIES

We consider a single-hop network where each thing node
can communicate directly with the others thing nodes. The
computation and communication capabilities are different for
all thing nodes. The thing nodes communicate with each other
using bidirectional links. The thing nodes are dispersed in a
thing field and include a large number of static and mobile
things. We consider a network of thing with n items and T
nodes, IoT(n,T) for short. In addition, the things have different
memory capacities; each thing t has Mt items in its local
memory. We refer the reader to Fig. 2 (a) depicting an IoT
(8, 32). In IoT (T,n), each thing ti has its local memory Mi

items. Figure 2 (b) presents the network after the permutation
routing, where each thing node has its item and can proceed
to execute its task [12].

(b) An IoT network after permutation routing

t1

1 1 22

t2

3 32 3

t3

4 4 4 4

t4

5 5 5 6

t5

6 6 6 7

t6

777 7

t7

7 8 8 8

t8

8 8 8 8

(a) An IoT network befor permutation routing

t1

3 8 37

t2

4 78 8

t3

2 6 7 8

t4

7 6 8 7

t5

5 8 4 2

t6

164 8

t7

5 6 4 1

t8

3 7 5 2

Fig. 2. An example of IoT before and after permutation routing

Let LT = {t1, t2, .., tT } be the list of T things in IoT(T,n)
and let LM = {M1,M2, ..,MT } be the set of the memory
spaces that hold the items of the things in the network. With
Mi the memory space of thing ti , for each 0 ≤ i ≤ T .
We note, MIN(Mi) (respectively MAX(Mi)) the lowest
(respectively the largest) memory space for items that a thing
has in the network .

V. AN OVERVIEW OF OUR PROTOCOL

In this section, we present our proposed protocol. It uses
O(nk) memory on IoT(T, n, k), where k is the number of
channels. We assume that the permutation routing on an
IoT(T,n,k) of T things, n items and k channels, where each
thing has a memory space of O(nk), is possible when:

k ≤
√
T (1)

we need at least k of agent nodes in each group to receive
all items. Our protocol consists of three steps: Grouping thing
nodes, Broadcast items to groups and Broadcast items to the
final destination.

First step: We partition the T things ti, 1 ≤ i ≤ T , into k
groups G(1), G(2), .., G(k) with T

k the number of thing nodes
in each group and Mj is the number of items for each thing
node tj ,1 ≤ j ≤ T

k . Note that the maximum value possible
for grouping is kmax =

√
T , in each group we select k

agent nodes which receive the items that belong to a given
group. Unlike the previous work of [12], our selection method
depends on on both two parameters at a time, the maximum
memory spaces Mi and the number of T things. Then, the
nodes are divided into identical groups with same number of
nodes. A size, S(j), of a group is defined as the sum of all
Mi, i ∈ {1, 2, .., T}, that a group G(j) contains, with different
sizes.

Second step: In this step, each thing node ti determines
all working and faulty thing nodes in its group, and gets all
agent thing nodes of all network IoT (T, n). Each group has
k agent nodes. The k agent in every group G(j) receive nm
items composed of a set {Mi},i ∈ {(m−1)Tk +1, ...,mT

k } that
have destination addresses in G(j). In each group G(m) and
in parallel, the T

k nodes use the channel C(m) to transfer all
these items to their respective destination groups. But, at this
point the items are only sent to agent nodes not necessarily to
the correct destination thing node in the group. Note that each
agent tam (G(j)) in the group G(j) may be the destination
of all things in its group, because all the nm items in group
G(m) may have all destinations in the unique group G(j). On
this basis, we must have for one agent node tam a memory
space capacity Mam equal to the largest size group to store
all {Mi}, (m− 1)Tk + 1 ≤ m ≤ T

k items of a group G(m).
Lemma 5.1:

Let Mi, i ∈ {1, 2, .., T}, memory space values of a group with
the condition k =

√
T ; then the largest size S(lg) of a group,

will be with a size of:

S(lg) ≤ T

k
MAX(Mi) (2)

proof:
The best grouping for the largest group is when a group
contains only MAX(Mi) for example, and the rest of the
groups contain the other Mi, Tk + 1 ≤ i ≤ T , so we can
write:

n =

T/k∑
i=1

(Mi) +

T∑
i=(T/k)+1

(Mi)

S(G(1)) = n−
T∑

i=(T/k)+1

(Mi)

S(lg) ≤

T/k∑
i=1

MAX(Mi) +

T∑
i=(T/k)+1

(Mi)

− T∑
i=(T/k)+1

(Mi)

T/k∑
i=1

MAX(Mi) =
T

k
MAX(Mi)

so the largest group S(lg), is: S(lg) ≤ T
kMAX(Mi)

With this condition an agent node will use in the worst
case O(nk) of memory space because in each group the overall
number of items will be T

kMAX(Mi) items.
Lemma 5.2:

Let Mi, i ∈ {1, 2, .., T}, memory space values of a group
with the condition k =

√
T , then the smallest size S(ls) of a

group, will be with a size of:

S(ls) ≥ T

k
MIN(Mi) (3)

proof:
The worst grouping for the smaller group is for a group that
contains only MIN(Mi) for example, and the rest of the
groups contain the other Mi, so we can write:

n =

T/k∑
i=1

(Mi) +

T∑
i=(T/k)+1

(Mi)

S(G(1)) = n−
T∑

i=(T/k)+1

(Mi)

S(ls) ≥

T/k∑
i=1

MIN(Mi) +

T∑
i=(T/k)+1

(Mi)

− T∑
i=(T/k)+1

(Mi)

T/k∑
i=1

MIN(Mi) =
T

k
MIN(Mi)

Therefore the least group S(ls), is: S(ls) ≥ T
kMIN(Mi)

With this condition an agent will use in the best case O(nk)
of memory space because in each group the overall number
of items will be T/kMIN(Mi) items.

At the end of the second step, each group G(j), 1 ≤ j ≤ k,
has received all the nm items whose destinations are thing
nodes in group G(j). However, we have to ensure that any
items destined for G(j) are not sent to faulty agent nodes.

Third Step: In the third step, we again assign channel C(i)
to G(i) and route at most T

kMAX(Mi) items to their correct
destination nodes within G(i). This routing is done in parallel
in all the groups using channel C(i) for group G(i). All the
items destined for the faulty nodes can be dropped before they
are sent to their final destinations.

VI. PERMUTATION ROUTING PROTOCOL ON IoT (T,n)
Our protocol is composed of three steps: grouping thing

nodes, broadcast items to its group and broadcast to the
correct thing node.

A. Grouping thing nodes
The nodes in the network are divided into k groups,

G(1), G(2), .., G(k) each group contains T
k thing nodes. Each

group must have at least k thing nodes, otherwise the con-
dition, k ≤

√
T , is not verified. We use the grouping

algorithm presented in Figure 3 to achieve the grouping in the
network. This algorithm takes in input a list of memory spaces
Lm = {M1,M2, ..,MT }; and an integer k which represents
the number of channels which does not exceed

√
T . It outputs

the list LG of groups G(1), G(2), .., G(k).
Firstly we put in group G(1), the thing node which has

MAX(Mi) of Lm = {M1,M2, ..,MT }, in G(2) the thing
node which has MAX(Mi) of Lm −MAX(G(1)) and so
on until G(k) where we put in it, MAX(Mi) of Lm −
MAX(G(k−1)). After, at each step we add the maximum of
list Lm = {M1,M2, ..,MT } −MAX(G(i)), 1 ≤ i ≤ k, that
does not contain the elements already added into the k groups,
to the group G(j) that has the current minimum S(j). But,
if one of k groups of list Ln is full, i.e, that we have added
T
k thing nodes, we remove it from its list Ln. We continue
the last step, by adding the MAX(Ln) into not full minimum
group, and removing full groups from list until Ln is empty.
By applying Algorithm 1:Grouping thing nodes , each group
will have at the end T

k thing nodes. This step is done locally
and we can see that the overhead involved in assigning each
thing node t into a group G(i) doesn’t take any time slot.

B. Broadcast items to its group
The main role of this procedure is to transmit the items of

each thing node to agent nodes of the destination group. The
computation is discussed with respect to G(i), 1 ≤ i ≤ k, but
the same computation is done in parallel in all the groups using
separate channels. We assign channel C(i) to group G(i) and
we expect that there is at least k working thing nodes in each
group. We denote the jth thing node in group G(i) by tj(G(i),
1 ≤ j ≤ T

k ; and the jth agent thing node in group G(i) by
taj(G(i)), 1 ≤ j ≤ k. With the condition (2) a thing node
tj(G(i)) will use in the worst case the largest size S(lg), of
a group divided by number of thing nodes in it T

k , so we can
write : S(lg)

T/k = MAX(Mi) of memory spaces. The principal
tasks in this procedure are as follows:

1) Each thing node tj(G(i), in group G(i), gets the IDs of
all working thing nodes and all agent nodes taj(G(i))
in its group.

2) Each agent thing node taj(G(i), in group G(i), informs
all the other groups about its ID and update faulty agent
nodes if there are more than k working thing nodes in
its group.

3) Each thing node ti(G(j) of the groups G(j), 1 ≤ j ≤ k,
broadcasts their items to unique thing agents taj(G(i))
of group G(i).

Algorithm 1 Grouping thing nodes
INPUT: set Lm = {M1,M2, ..,MT }
OUTPUT: LG = {G(1), G(2), .., G(k)}

Ls← Lm
Ln← LG
while Ln 6= φ do

if |G(MIN(Ln))| < T/k then
G(MIN(Ln))←MAX(Ls)
Ls← Ls−MAX(Ls)

else
Ln← Ln−G(MIN(Ln))

end if
end while
i← k
while Ls 6= φ do
G(i)←MAX(Ls)
Ls← Ls−MAX(Ls)
i← i− 1

end while
return (LG)

1) Task 2.1: This task has the main role of determining all
failed fi thing nodes and all k agent nodes, in each group
G(i) ,1 ≤ i ≤ k. This task consists of two subtasks :

a) Subtask 2.1.1: In the first subtask, each thing node
in group G(i) broadcasts its ID one after another to all thing
nodes in its group G(i). This broadcast is done in parallel using
channel C(i), 1 ≤ i ≤ k. Every node knows the slot when to
broadcast its ID but the faulty node do not broadcast. Finally,
each thing node assigns a correct serial number to itself among
all the working thing nodes in group G(i).

We use for this subtask Algorithm 2: Faulty nodes. This
task takes T

k slots and each thing node remains awake for T
k

slots.
b) Subtask 2.1.2: The next subtask is to select the agent

nodes in each group G(i). The role of the k agents taj(G(i)),
1 ≤ j ≤ k, in every group G(i), is to receive in their local
memory spaces all the nm items of different groups G(j), 1 ≤
j ≤ k, that have destination addresses in group G(i). We must
choose, as agents, the k working nodes that have the maximum
memory spaces for items in Lm = {M1,M2, ..,MT }. This
choice therefore consists of performing the least number of
broadcast rounds in each group.

Let t1(G(j)), t2(G(j)), ..., tT/k(G(j)) the nodes in G(j),
1 ≤ j ≤ k, where ta1(G(j)), ta2(G(j)), .., tak(G(j)) repre-
sent the k agents among the T/k nodes of this group. Note
that this selection can be done locally in each thing node and
does not require any time slots.

2) Task 2.2: We have to ensure that any items are not
sent to faulty agents in G(i). All thing nodes in the same
group G(i), have complete informations about all the working,
faulty nodes and agents in it. However they don’t know
the IDs of the working agents in the other groups. So, by
applying the Algorithm 3: Select well agent, each agent

Algorithm 2 Faulty nodes(ti(G(j)))

{do in parallel for each G(j) on channel C(j)}
OUTPUT: fi : Number of faulty thing nodes
Status nodes[] : Array of thing nodes status in G(j)

if Time to Broadcast(ti(G(j))) then
Thing ti(G(j) broadcasts ID(ti(G(j)) on C(j)

else
if Thing ti(G(j) receives ID(tm(G(j)) then
Status nodes[tm(G(j)]← true

else
Status nodes[tm(G(j)]← false
fi ← fi + 1

end if
end if
return Status nodes[], fi
{Definition of Function: Time to Broadcast()}
Function Time to Broadcast: ti(G(j))
d← 0
for h← 1, h < i, h++ do
d← d+ 1

end for
return (d)

tajG(i), 1 ≤ j ≤ k, in G(i) broadcasts its ID to all nodes
in all network. We use one channel C(1) to send the IDs of
the agents. When agent taj(G(i)) broadcasts its ID, all the
thing nodes listen to these broadcasts. If nodes don’t receive
the ID of agent tap(G(m)) it means the agent is faulty, so we
increment fai: the number of faulty agents in all IoT (T, n)
network. Next, nodes of G(i) choose another agent node for
this group and we add one time slot for next broadcasting; but
if the total number of working nodes is less than k then all
the nodes in network may reinitialize the nodes in the whole
network and restart the permutation routing protocol.

This subtask uses one channel C(1) and all the thing nodes
remain awake during the broadcast of IDs. It takes on average
k+fai/k time slots to complete for each group, i.e., k2+fai
time slots overall, and each thing node remains awake for
k2 + fai time slots.

3) Task 2.3: In this task, we need to specify the exact slots
when ti will transmit its items in order to avoid collisions
and subsequent item losses. Each node ti knows the list of
memory spaces. This start time is the sum of this memory
spaces

∑i
p=1Mtp slots. Therefore the process takes at most

T
k and at least T

k −fi periods, if fi faulty thing nodes exist. In
the ith period, 1 ≤ i ≤ T

k − fi, the node ti in G(j) routes its
Mti items with destination to agent in G(m). The transmission
takes |Mti | slots but it starts at |Mt1 | + |Mt2 | + .. + |Mti−1 |
slots. Hence, all nodes know when to wake up and transmit
their items.

We use Algorithm 4: Transmit items to Agents to per-
form this task. Each thing node has to remain awake for
at most MAX(Mti) slots to transmit its items an overall
T
kMAX(Mti) slots for transmission and they have to remain

Algorithm 3 Select Well Agent(tj(G(i)))

{use one channel C(1) for all thing nodes in IoT (T, n)}
OUTPUT: fai : Number of faulty agent;
Status agents[] : Array of k agents status

if Time to Broadcast(tj(G(i))) AND tj(G(i)) is agent
tap(G(m)) then

Thing tj(G(i) broadcasts its ID on channel C(1)
else

Thing node tj(G(i) receives ID of agent tap(G(m))
if ID of agent is receipted then
Status agents[tap(G(m))]← true

else
fai ← fai + 1
Status agents[tap(G(m))]← false
Select new agent tap(G(m)) for G(m)
if new agent Exist then

Insert new agent in Status agents[] after the old
faulty agent
Add one Time slot for broadcasting a new agent

else
RESTART the permutation routing protocol

end if
end if

end if
return Status agents[]
{Definition of Function: Time to Broadcast()}
Function Time to Broadcast: tap(G(m)),fai
d← 0
for h← 1, h < p+ (m− 1) ∗ k, h++ do
d← d+ 1+ fai {add fai Time slots for Broadcasting}

end for
return (d)

awake for at most T
kMAX(Mti) slots to receive items as an

agent thing node.
This task takes overall at most 2T

kMAX(Mti) time
slots; and all the thing nodes remain awake for at most
2T
kMAX(Mti) time slots.

C. Broadcast to the correct thing node

At the end of step 2, all agents taj(G(i)), 1 ≤ j ≤ k, in
G(i) hold at most S(i) ≤ T

kMAX(Mi) with destination in
G(i).

Each agent in G(i) has complete information about the
faulty nodes of G(i), all the items destined for the fi faulty
nodes can be dropped before they are sent to their correct
destinations. Therefore, the main concern is managing the
broadcast on each channel C(i) because node will be the
destination of different agents taj(G(i)) of its group G(i)
at the same time. The first task plays, essentially, a channel
reservation role. Finaly, the second task is to broadcast items
in parallel for each group G(i), 1 ≤ i ≤ k,on channel C(i).

1) Task 3.1: First, we determine the list Lp of memory
spaces Ma1, Ma2, ..,Mak of items in agent nodes ta1, .., tak.

Algorithm 4 Transmit items to Agents(ti(G(j)))

{do in parallel for each G(j) on channel C(j)}
INPUT: set L = {Mt1 ,Mt2 , ..,MtT

k
−fi
} in G(j)

if Time to Broadcast(ti(G(j))) then
for s← 1, s ≤Mti do

Thing ti(G(j)) broadcasts items to taj(G(m))
end for

else
if ti(G(j) is the agent taj(G(m)) then

Agent taj(G(m)) copies items in its local memory
else

Thing ti(G(j)) drop items {not destined for it}
end if

end if
{Definition of Function: Time to Broadcast()}
Function Time to Broadcast: ti(G(j)),Mti

d← 0
for h← 1, h < i, h++ do
d← d+Mti {d = |Mt1 |+ |Mt2 |+ ..+ |Mti | }

end for
return (d)

Next, we can compute the exact time to broadcast them. We
note that k broadcast rounds suffice to fill the list Lp = {Ma1,
Ma2, ..,Mak}. Now, a simple addition operation allows to
each agent taj(G(i)), 1 ≤ j ≤ k, to know the exact moment
|Ma1|+ |Ma2|+ ..+ |Maj | slots to broadcast. The details of
the procedure are in the Algorithm 5: time to send. This task
takes overall k time slots and the entire agent nodes remain
awake for k time slots.

Algorithm 5 Procedure T ime to send(taj(G(i)))

{do in parallel for each G(i) on channel C(i)}
OUTPUT: set Lp = {} memory spaces of k agents

Call (Time to sendtj(G(i)), Lp)
Procedure: Time to send: tj(G(i))), Lp
if Time to Broadcast(tj(G(i)))

AND tj(G(i)) is agent taj(G(i)) then
Lp← Lp+ {Maj}{ put {Mam} in the set Lp }
Agent taj(G(i)) broadcasts Maj in group G(i)

else
Agent taj(G(i)) receives Mam on channel C(i)
Lp← Lp+ {Mam}{ put {Mam} in the set Lp }

end if
End Procedure
{Definition of Function: Time to Broadcast()}
Function Time to Broadcast: taj(G(i))
d← 0
for h← 1, h < j, h++ do
d← d+ j

end for
return (d)

Step Max. completion
Time slots

Max. awake
Time slots

Step2

Task 2.1 T
k

T
k

Task 2.2 k2 k2

Task 2.3 2T
k
MAX(Mi) 2T

k
MAX(Mi)

Step3

Task 3.1 k k

Task 3.2 2T
k
MAX(Mi) 2T

k
MAX(Mi)

TABLE I
THE NUMBER OF SLOTS FOR COMPLETION AND THE MAX. NUMBER OF

SLOTS THAT A NODE REMAINS AWAKE.

2) Task 3.2: In this last task, we transmit items of agents
taj(G(i)), 1 ≤ j ≤ k at their corresponding times, one by
one. The details of this procedure are in the Algorithm 6:
Broadcast to final destinations.

This task takes 2(|Ma1| + |Ma2| + .. + |Mak|) ≤
2T
kMAX(Mi) time slots to transmit/receive items (since this

is the maximum number of items it holds as agent thing
node), and all the thing nodes remain awake for at most
2T
kMAX(Mi) time slots.
The number of time slots for completion and the maximum

awake time slots are shown in Table I for all protocol exe-
cution steps. Therefore, all steps takes overall k + k2 + T

k +
4T
kMAX(Mi) time slots and all the thing nodes remain awake

for k + k2 + T
k + 4T

kMAX(Mi) time slots.

Algorithm 6 Broadcast to final destinations(ti(G(i)))

{do in parallel for each G(i) on channel C(i)}
INPUT: set Lp = {Ma1,Ma2, ..,Mak} in G(i)

{Lp is calculated in Algorithm 5}

if Time to Broadcast(tan(G(i)))
AND tj(G(i)) is agent tap(G(i)) then

for s← 1, s ≤Man do
agent tap(G(i)) sends Items to final thing node

end for
else

if Thing node tj(G(i) is final destination then
Thing node tj(G(i) copies items in its local memory

else
Thing node tj(G(i) drop items

end if
end if
{Definition of Function: Time to Broadcast()}
Function Time to Broadcast: tj(G(i)),Man

d← 0
for h← 1, h < Man, h++ do
d← d+Man {d = |Ma1|+ |Ma2|+ ..+ |Mak|}

end for
return (d)

VII. CONCLUSION

We have presented a simple fault-tolerant and energy-
efficient reservation-based DAMA protocol for permutation
routing protocol for single-hop wireless network of things.
Our protocol performs well when the number channels satisfy
the condition k ≤

√
T . However, there is a check in our

protocol for this condition if it is violated, we do a reset of the
entire network. This protocol allows a parallel broadcasting
using several communication channels. Therefore, the pro-
posed protocol allows in a real application to be fault-tolerant,
energy-efficient and works without conflicts or collisions on
the communication channels.

We plan to simulate this protocol and are convinced that it
will work well if the previous constraints are met. The number
of emissions from each node should be much lower than the
theoretical results found.

REFERENCES

[1] R. Dechter , L. Kleinrock: Broadcast Communication and Distributed
Algorithms.IEEE Trans. Computers, vol. 35, pp. 210-219, 1986.

[2] I. Chlamtac , S. Kutten: Tree-Based Broadcasting in Multihop Radio
Networks.IEEE Trans. Computers, vol. 36, pp. 1209-1223, 1987.

[3] W. C. Fifer , F. J. Bruno: Low cost packet radio. Proc. IEEE, Vol. 75,
pp. 33-42, 1987.

[4] O. Iova, F. Theoleyre , T. Noel: Using Multiparent Routing in RPL to
Increase the Stability and the Lifetime of the Network.Elsevier Ad Hoc
Networks, vol. 19, pp. 45-62, June 2015.

[5] A. Radhakrishnan , M. L. Madhav: A Survey on Efficient Broadcast
Protocol for the Internet of Things. IJECS, Vol. 5, pp. 18838-18842,
2016.

[6] K. Sivalingam, M.B. Srivastava, P. Agrawal: Low Power Link and Ac-
cess Protocols for Wireless Multimedia Networks. Proc. IEEE Vehicular
Technology Conf., 1997.

[7] A. Datta : A Fault-Tolerant Protocol for Energy-Efficient Permutation
Routing in Wireless Networks. IEEE Trans. Computers, Vol. 54, pp.
1409-1421, 2005.

[8] D. Bertsekas , R. Gallager: Data Networks, 2nd Edition, Prentice Hall,
(1992). ISBN: 0-13-200916-1

[9] J. Yick, B. Mukherjee , D. Ghosal: Wireless sensor network survey.
Computer Networks, vol. 52, no. 12, pp. 2292-2330, 2008.

[10] J. Gubbi, K. Krishnakumar, R. Buyya, M. Palaniswami: Iternet of Things
(IoT): A vision, architectural elements, and future directions. Journal of
Future Generation Computer Systems, Vol. 29, Issue 7, pp. 1645-1660,
2013.

[11] A. Datta , A. Y. Zomaya: New energy-efficient permutation routing pro-
tocol for single-hop radio networks. Proc. 8th International Computing
and Combinatorics Conference (COCOON 02), LNCS Vol. 2387, pp.
249-258, (2002).

[12] H. Lakhlef, M. Raynal , J. Bourgeois: Efficient Broadcast Protocol for
the Internet of Things. 30th IEEE International Conference on Advanced
Information Networking and Applications (AINA), pp. 998-1005, 2016.

[13] H. Lakhlef, B. Bouabdallah, M. Raynal , J. Bourgeois: Agent-based
Broadcast Protocols for Wireless Heterogeneous Node Networks. Com-
puter Communications, Vol. 115, pp. 51-63, (2018).

[14] K. Nakano , S. Olariu: Randomized initialization protocols for radio
networks. IEEE Trans. Parallel and Distributed Systems, Vol. 11, pp.
749-759, 2000.

[15] K. Nakano, S. Olariu , J. L. Schwing: Broadcast-efficient protocols for
mobile radio networks. IEEE Trans. Parallel and Distributed Systems,
Vol. 10, pp. 1276-1289, 1999.

[16] K. Nakano, S. Olariu , A.Y. Zomaya: Energy-Efficient Permutation
Routing in Radio Networks. IEEE Trans. Parallel and Distributed
Systems, vol. 12, no. 6, pp. 544-557, 2001.

[17] R. A. Powers: Batteries for low-power electronics. Proc. IEEE, Vol. 83,
pp. 687-693, 1995.

[18] M. Fine , F. A. Tobagi: Demand assignment multiple access schemes in
broadcast bus local area networks. IEEE Trans. Computers, Vol. 33, pp.
1130-1159, (1984).

