NOUI Djaidja
جعيجع النوي
noui.djaidja@univ-msila.dz
06 63974300
- Mathematics Department
- Faculty of Mathematics and Informatics
- Grade MCB
About Me
Doctorat en Mathématiques. in Université de M'sila
Research Domains
Integral equations Regularization of ill-posed problems Numerical Analysis
LocationMsila, Msila
Msila, ALGERIA
Code RFIDE- 2022
-
master
Amrane Khaled
Approximate solution of Volterra integro differential equation by Euler polynomials
- 2022
- 2021
-
master
Nadir Mohamed Nasseh
On the Numerical solution of Volterra-Fredholmintegral equations using Tchebychev polynomials
- 2021
-
master
GUERROUM Chaima
On the Numerical solution of Volterra-Fredholm integral equations using Taylor polynomials
- 2020
-
master
HAIMED Amina
On the Numerical solution of mixed volterra- Fredholm integral equations
- 2020
-
master
HAMMOU HIND
Comparison Between Touchard and Legendre Polynomials For Volterra Intégral Equations.
- 2020
- 2019
- 2019
- 2018
-
master
Mansour Mouchira
Approches par les splines et méthode Simpson modifiée des équations intégrales de Volterra de première espèce
- 2018
- 2017
- 2016
- 2015
-
master
M'hamdia Rania
Solution approchée d'équations intégrales de Volterra de première espèce
- 2014
-
master
Kebaili Nour el Imène
La méthode des moindres carrés pour les équations de la physique
- 27-02-2021
-
Doctorat en Mathématiques
Etude des certains équations intégrales de Volterra du premier espèce en utilisant les techniques des splines - 1960-12-31 00:00:00
-
NOUI Djaidja birthday
- 2021
-
2021
Comparison between Taylor and perturbed method for Volterra integral equation of the first kind
As it is known the equation Aϕ = f with injective compact operator has a unique solution for all f in the range R(A).Unfortunately, the righthand side f is never known exactly, so we can take an approximate data fδ and used the perturbed problem αϕ + Aϕ = fδ where the solution ϕαδ depends continuously on the data fδ, and the bounded inverse operator (αI + A)−1 approximates the unbounded operator A−1 but not stable. In this work we obtain the convergence of the approximate solution of ϕαδ of the perturbed equation to the exact solution ϕ of initial equation provided α tends to zero with δ/√α. .
Citation
Noui DJAIDJA , Mostefa NADIR , , (2021), Comparison between Taylor and perturbed method for Volterra integral equation of the first kind, Numerical Algebra, Control and Optimization, Vol:11, Issue:4, pages:487-493, American Institute of Mathematical Sciences
- 2021
-
2021
Approximation Method For Volterra Integral Equation Of The First Kind.
Generally, when solving integral equations of the first kind, Tikhonov regularization is often used when the right-hand side of the equation is noisy. However, in this work, we propose a new regularization technique for solving Volterra integral equations of the first kind. Specifically, we have developed a method that is similar to Lavrentiev's classical method but tailored to the problem at hand. We have conducted a convergence analysis of our method and compared its performance to Tikhonov's method. Our results show that our proposed method outperforms Tikhonov's method for this specific problem. We provide several examples to illustrate the performance of our method. Overall, our work contributes to the field of numerical analysis by providing a new and effective method for solving Volterra integral equations of the first kind.
Citation
Noui DJAIDJA , ,(2021), Approximation Method For Volterra Integral Equation Of The First Kind.,1st International Conference on Pure and Applied Mathematics,IC-PAM’21, May 26-27, 2021, Ouargla, Algeria
- 2021
-
2021
Notes de cours: outils de programmation 2
Ce polycopié de cours, est un guide à la découverte des différentes fonctionnalités de base du logiciel Matlab. Matlab nous permet de résoudre numériquement de nombreux problèmes mathématiques. En outre, Matlab dispose de développement avec l’outil graphique. Le but de ce cours est de permettre aux étudiants de deuxième année licence mathématiques de : 1-Découvrir les bases du langage Matlab; 2-Apprendre la syntaxe de base du langage Matlab ; 3-Se familiariser rapidement avec Matlab ; 4-L’apprentissage de la programmation et des fonctionnalités principales de MATLAB.
Citation
NouiDJAIDJA , ,(2021); Notes de cours: outils de programmation 2,Université de Msila,
- 2018
-
2018
Approximation Method for Volterra Integral Equation of the First Kind
Generaly, to solve integral equation of the first kind must be use Tikhonov regularization when the free mumber of the equation is noised. In this work we present a convergence analysis for solving Volterra integral equation of the first kind by a new technical resemble to Lavrentiev classical method, where we find it better than Tikhonov's method. Some examples illustrate the performance of the this method.
Citation
Noui DJAIDJA , , (2018), Approximation Method for Volterra Integral Equation of the First Kind, Intrenational journal of mathematics and computation, Vol:29, Issue:4, pages:63-66, www.ceser.in/ceserp
- 2017
-
2017
The Essential Spectrum of a Sequence of Linear Operators in Banach Spaces
In this work we introduce some essential spectra $(\sigma_{ei}, i=1,...,5)$ of a sequence of closed linear operators $(T_{n})_{n\in\mathbb{N}}$ on Banach space, we prove that if $(T_{n})_{n\in\mathbb{N}}$ converges in the generalized sense to a closed linear operator $T$, then there exists $n_{0}\in \mathbb{N}$ such that, for every $n\geq n_{0}$, we have $\sigma_{ei}(\lambda _{0}-(T_{n}+B))\subseteq \sigma _{ei}(\lambda_{0}-(T+B)), i=1,...,5$, where $B$ is a bounded linear operator, and $\lambda _{0}\in \mathbb{C}$. The same treatment is made when $(T_{n}-T)$ converges to zero compactly.
Citation
Noui DJAIDJA , , (2017), The Essential Spectrum of a Sequence of Linear Operators in Banach Spaces, International Journal of Analysis and Applications, Vol:15, Issue:1, pages:1-7, http://www.etamaths.com
- 2016
-
2016
Sur les problèmes mal posés
Généralement la discrétisation d'une équation intégrale du première espèce conduira à un système linéaire mal conditionné.Une légère perturbation sur les données peut avoir une influence arbitrairement grande sur le résultat. Dans cet exposé nous utiliserons les méthodes de régularisation pour obtenir à une solution stable pour un système mal-conditionné.
Citation
Noui DJAIDJA , ,(2016), Sur les problèmes mal posés,Journées doctorales du laboratoire de mathématiques pures et appliquées,Université de M'sila