NOUREDDINE Benhamidouche
بن حميدوش نورالدين
noureddine.benhamidouche@univ-msila.dz
06 60 33 90 92
- Mathematics Department
- Faculty of Mathematics and Informatics
- Grade Prof
About Me
Doctorat. in University of Setif
Research Domains
Partial differential equations and applications PDEs and image processing
LocationMsila, Msila
Msila, ALGERIA
Code RFIDE- 2023
-
Doctorat soutenu
Djemiat Rabah
Etude de quelques modèles d'EDPS fractionnaires et leurs applications.
- 2023
- 2022
- 2022
- 2021
-
master
DJEDILI Rima
Les solutions de viscosit´ e des ´ equations aux d´ eriv´ ees partielles
- 2019
-
Doctorat soutenu
Basti Bilal
Existence et unicité de solutions auto-similaires pour certaines équations fractionnaires non-linéaires
- 2019
-
Doctorat soutenu
Basti Bilal
Existence et unicité de solutions auto-similaires pour certaines équations fractionnaires
- 2019
- 2019
-
master
Lachache Mohamed
Etude d'existence et d'unicité de la solution du modèle de Caté et al
- 2019
- 2018
- 2018
- 2018
- 2018
-
master
Ouadah asma , Redjem aicha
Quelques modèles mathématiques pour l'amélioration de contour d'image
- 2017
-
master
Sadam Zerouak , Khaldoune Mohamed
Calcul fractionnaire et detection de contour d'image
- 2017
- 2017
-
master
Bourahla houda , Rabhi chaima
Matlab pour traitement de l'image fondement et aplication
- 2016
- 2016
- 2016
-
master
Bisker Maroua
Etude du modèle non linéaire de Pérona Malik unidimensionel en traitement de l'image
- 2016
- 2016
- 2015
-
Doctorat soutenu
Arioua Yacine
Existence globale et explosion des solutions d'équation de réaction diffusion approche ondelette
- 2009
- 2008
-
Magistère
Refice Ahmed
Problème d’explosion de la solution d’équation de Type extension de Fujita par la méthode des ondelettes mobiles
- 2008
-
Magistère
Benkherrouche Amar
Etude de l’équation de Ginzburg- Landau par la méthode des ondelettes
- 2007
-
Magistère
Guelati Zineb
Etude de l’explosion de la solution l’équation de la Chaleur non-linéaire par la méthode des ondelettes mobiles
- 2006
-
Magistère
Arioua Yacine
Etude de l’équation de Fujita par la méthode des ondelettes mobiles
- 2002
- 2001
-
Magistère
Benmehdi Sabah
Etude du système réaction diffusion par la méthode des ondelettes mobiles
- 2000
-
Magistère
Aib Aziza
Instabilité gravitationnelle et ondelettes mobiles, cas deux ondelettes immobiles
- 03-11-1995
- 10-06-1990
- 15-06-1983
- 1959-02-20 00:00:00
-
NOUREDDINE Benhamidouche birthday
- 2023-12-21
-
2023-12-21
Existence of Traveling Profiles Solutions to Porous Medium Equation
In this paper, we shall study the existence and uniqueness of solutions called "traveling profiles solutions" to the porous medium equation in one dimension. By these solutions, we generalize the results obtained by Gilding and Peletier who proved the existence of self similar solutions of type I, II and III to the same equation. The principal idea of our work is to convert the porous media equation in to an equivalent nonlinear differential equation, and to prove the existence and uniqueness of these new solutions under certain conditions.
Citation
YACINE Arioua , Noureddine BENHAMIDOUCHE , , (2023-12-21), Existence of Traveling Profiles Solutions to Porous Medium Equation, Journal officiel Mathematics and Application, Vol:46, Issue:1, pages:149-162, Publishing House of Rzeszów University of Technology P.O. Box 85, 35-959 Rzeszów, Poland
- 2023-10-25
-
2023-10-25
les mathématiques et les enjeux du developpment technologique
Nous présentons le role des mathématiques dans le developpment dedivers domaine technolgiques notamment en industrie en en economie
Citation
Noureddine BENHAMIDOUCHE , ,(2023-10-25), les mathématiques et les enjeux du developpment technologique,Mathematics and society,U.Msila - ENS Boussada
- 2023-10-15
-
2023-10-15
La modélisation mathématique aux service du developpment technologique
Nous présentons quelques aspects et exemples de modélisation mathématiques dans divers domaine technolgique s
Citation
Noureddine BENHAMIDOUCHE , ,(2023-10-15), La modélisation mathématique aux service du developpment technologique,National conference on mathematics and applications,Université de Setif
- 2023-05-06
-
2023-05-06
THEORETICAL STUDIES ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A MULTIDIMENSIONAL NONLINEAR TIME AND SPACE-FRACTIONAL REACTION-DIFFUSION/WAVE EQUATION
This paper discusses and theoretically studies the existence and uniqueness of radially symmetric solutions for a multidimensional nonlinear time and space-fractional reaction-diffusion/wave equation that enables treating vibration and control, signal and image processing, and modeling earthquakes, among other physical phenomena. Additionally, application of Schauder’s and Banach’s fixed point theorems facilitates identifying the existence and uniqueness of solutions for the selected equation. The applicability of our main results is demonstrated through examples and explicit solutions.
Citation
Noureddine BENHAMIDOUCHE , , (2023-05-06), THEORETICAL STUDIES ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A MULTIDIMENSIONAL NONLINEAR TIME AND SPACE-FRACTIONAL REACTION-DIFFUSION/WAVE EQUATION, Memoirs on Differential Equations and Mathematical Physics, Vol:89, Issue:2023, pages:1-16, Razmadze Mathematical Institute.
- 2023-04-03
-
2023-04-03
Existence results of self-similar solutions of the space-fractional diffusion equation involving the generalized Riesz-Caputo fractional derivative
In this paper, we have discussed the problem of existence and uniqueness of solutions under the self-similar form to the space-fractional diffusion equation. The space-fractional derivative which will be used is the generalized Riesz-Caputo fractional derivative. Based on the similarity vari- able η, we have introduced the equation satisfied by the self-similar solutions for the aforementioned problem. To study the existence and uniqueness of self-similar solutions for this problem, we have applied some known fixed point theorems (i.e. Banach’s contraction principle, Schauder’s fixed point theorem and the nonlinear alternative of Leray-Schauder type).
Citation
YACINE Arioua , Noureddine BENHAMIDOUCHE , Ouagueni Nora, , (2023-04-03), Existence results of self-similar solutions of the space-fractional diffusion equation involving the generalized Riesz-Caputo fractional derivative, Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Vol:22, Issue:1, pages:49-74, Sciendo
- 2022
-
2022
Analytical studies on the global existence and blow-up of solutions for a free boundary problem of two-dimensional diffusion equations of moving fractional order
This paper particularly addresses and discusses some analytical studies on the existence and uniqueness of global or blow-up solutions under the traveling profile forms for a free boundary problem of two-dimensional diffusion equations of moving fractional order. It does so by applying the properties of Schauder's and Banach's fixed point theorems. For application purposes, some examples of explicit solutions are provided to demonstrate the usefulness of our main results.
Citation
Noureddine BENHAMIDOUCHE , Rabah Djemiat, Basti Bilal, , (2022), Analytical studies on the global existence and blow-up of solutions for a free boundary problem of two-dimensional diffusion equations of moving fractional order, Advances in the Theory of Nonlinear Analysis and its Application,, Vol:6, Issue:3, pages:287 - 299, e-ISSN: 2587-2648 Founded: 2017 Period: Quarterly Publisher: Erdal KARAPINAR
- 2022
-
2022
Existence Of Traveling Wave Solutions For A Free Boundary Problem Of Higher-Order Space-Fractional Wave Equations
The fractional wave equation of higher order is presented as a generalization of the higher-order wave equation when arbitrary fractional-order derivatives are involved. This paper investigates the problem of existence and uniqueness of solutions under the traveling wave forms for a free boundary problem of higher-order space-fractional wave equations. It does so by applying the properties of Schauderís and Banachís Öxed point theorems
Citation
Noureddine BENHAMIDOUCHE , Rabah Djemiat, Basti Bilal, , (2022), Existence Of Traveling Wave Solutions For A Free Boundary Problem Of Higher-Order Space-Fractional Wave Equations, Applied Mathematics E-Notes,, Vol:22, Issue:22, pages:427-436, http://www.math.nthu.edu.tw/amen
- 2022
-
2022
Sur la modélisation mathématique en Biologie
La conference traite les principes de la modélisation mathématique en biologie Elle traite les phénomènes d'épidimiologie etc;...
Citation
Noureddine BENHAMIDOUCHE , ,(2022), Sur la modélisation mathématique en Biologie,Journnée Modélisation Mathématique en biologie,Universite de msila
- 2021
-
2021
Singularités et contours
The nonlinear diffusion equation is used to analyze the process of edge enhancement in image processing, based on a singularity principal, we study the image intensity evolution in the boundary layers around the edges of image. forms.
Citation
Noureddine BENHAMIDOUCHE , ,(2021), Singularités et contours,Journnée International de Mathématiques, SMA 2021.,Alger
- 2020
-
2020
Existence results of self similar solutions to the caputo-types space-fractional heat equation
This paper investigates the problem of existence and uniqueness of solutions under the self-similar forms to the space-fractional heat equation. By applying the properties of Banach’s fixed point theorems, Schauder’s fixed point theorem and the nonlinear alternative of Leray-Schauder type, we establish several results on the existence and uniqueness of self-similar solutions to this equation.
Citation
Noureddine BENHAMIDOUCHE , bilal basti, , (2020), Existence results of self similar solutions to the caputo-types space-fractional heat equation, surveys in Mathematics and its applications, Vol:15, Issue:15, pages:153-168, http:/www.utgjiu.ro/math/sma
- 2020
-
2020
Existence Results for Nonlinear Katugampola Fractional Differential Equations with an Integral Condition
This work studies the existence and uniqueness of solutions for a class of nonlinear fractional di erential equations via the Katugampola fractional derivatives with an integral condition. The arguments for the study are based upon the Banach contraction principle, Schauder's xed point theorem, and the nonlinear alternative of Leray-Schauder type.
Citation
Noureddine BENHAMIDOUCHE , Djemiat rabah, Basti Bilal, , (2020), Existence Results for Nonlinear Katugampola Fractional Differential Equations with an Integral Condition, Acta Math. Univ. Comenianae, Vol:89, Issue:2, pages:243-260, http://www.math.nthu.edu.tw/amen/
- 2020
-
2020
Global Existence and Blow-up of Generalized Self-Similar Solutions to Nonlinear Degenerate Diffusion Equation Not in Divergence Form
This paper investigates the problem of existence and uniqueness of positive solutions under the general self-similar form of the degenerate parabolic partial di§erential equation which is known as "nonlinear di§usion equation not in divergence form". By applying the properties of Banachís Öxed point theorems, we establish several results on the existence and uniqueness of the general form of self-similar solutions of this equation.
Citation
Noureddine BENHAMIDOUCHE , Basti Bilal, , (2020), Global Existence and Blow-up of Generalized Self-Similar Solutions to Nonlinear Degenerate Diffusion Equation Not in Divergence Form, Applied Mathematics E-Notes,, Vol:20, Issue:20, pages:367-387, http://www.math.nthu.edu.tw/amen/
- 2019
-
2019
Initial Value Problem For Nonlinear Implicit Fractional Differential Equations With Katugampola
This work studies the existence and uniqueness of solutions for a class of nonlinear implicit fractional differential equations via the Katugampola fractional derivatives with an initial condition. The arguments for the study are based upon the Banach contraction principle, Schauders fixed point theorem and the nonlinear alternative of Leray-Schauder type
Citation
YACINE Arioua , Noureddine BENHAMIDOUCHE , Basti bilal, , (2019), Initial Value Problem For Nonlinear Implicit Fractional Differential Equations With Katugampola, Applied Mathematics E-Notes, Vol:19, Issue:19, pages:397-412, Tsing Hua University Hsinchu, TAIWAN
- 2019
-
2019
Existence and Uniqueness of Solutions for Nonlinear Katugampola Fractional Differential Equations
The present paper deals with the existence and uniqueness of solutions for a boundary value problem of nonlinear fractional differential equations with Katugampola fractional derivative. The main results are proved by means of Guo-Krasnoselskii and Banach xed point theo- rems. For applications purposes, some examples are provided to demon- strate the usefulness of our main results.
Citation
YACINE Arioua , Noureddine BENHAMIDOUCHE , Basti Bilal, , (2019), Existence and Uniqueness of Solutions for Nonlinear Katugampola Fractional Differential Equations, Journal of Mathematics and Applications, Vol:42, Issue:42, pages:35-61, Publishing House of Rzeszow University of Technology, Poland
- 2019
-
2019
New exact solutions to nonlinear diffusion equation that occurs in image processing
In this paper, we would like to seek the new exact solutions to nonlinear diffusion equation that occurs in image processing. This equation is called degenerate parabolic equation. The solutions which we seek are called 'travelling profiles solutions'. For that, we have used the 'travelling profiles method' in order to find, explicitly, new exact solutions to this equation under some conditions. An interesting particular case has been discussed, this case coincides with particular solutions called 'intermediate asymptotic solutions' used to study the contour
Citation
Noureddine BENHAMIDOUCHE , Chouder Rafaa, , (2019), New exact solutions to nonlinear diffusion equation that occurs in image processing, International Journal of Computing Science and Mathematics, Vol:10, Issue:4, pages:364 - 374, IJCSM - Inderscience Publishers
- 2019
-
2019
Modèles mathématiques de contours d’image
on présente une étude sur les modèles d'EDPS modélisant l’amélioration de contour d'image , avec des exemples d'illustration. en générale es problèmes sont mal posé, on discutera également de ce problème
Citation
Noureddine BENHAMIDOUCHE , ,(2019), Modèles mathématiques de contours d’image,la 9ème édition du colloque Tendances dans les Applications Mathématiques en Tunisie Algérie Maroc,Tlemcen
- 2018
-
2018
Travelling profile solutions for nonlinear degenerate parabolic equation and contour enhancement in image processing
We propose in this work to find explicit exact solutions called travelling profile solutions to a nonlinear diffusion equation that occurs in image processing. Some of these explicit solutions are related with the phenomenon of contour enhancement in image processing. We present a generalization of the results obtained by Barenblatt to study the contour enhancement in image processing for exponent range of parameter enhancement.
Citation
Noureddine BENHAMIDOUCHE , Chouder Rafaa, , (2018), Travelling profile solutions for nonlinear degenerate parabolic equation and contour enhancement in image processing, Appl. Math. E-Notes, Vol:18, Issue:18, pages:1-12, Official Website http://www.math.nthu.edu.tw/~amen/
- 2017
-
2017
BOUNDARY VALUE PROBLEM FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS
The aim of this work is to study the existence and uniqueness solutions for boundary value problem of nonlinear fractional differential equations with Caputo-Hadamard derivative in bounded domain. We used the standard and Krasnoselskii’s fixed point theorems. Some new results of existence and uniqueness solutions for Caputo-Hadamard fractional equations are obtained
Citation
YACINE Arioua , Noureddine BENHAMIDOUCHE , , (2017), BOUNDARY VALUE PROBLEM FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL EQUATIONS, Surveys in Mathematics and its Applications, Vol:12, Issue:12, pages:103-115, Bucharest University, Romania
- 2011
-
2011
Bayesian estimation of the self-similarity exponent of the Nile River
In this study we propose a Bayesian approach to the estimation of the Hurst exponent in terms of linear mixed models. Even for unevenly sampled signals and signals with gaps, our method is applicable. We test our method by using artificial fractional Brownian motion of different length and compare it with the detrended fluctuation analysis technique. The estimation of the Hurst exponent of a Rosenblatt process is shown as an example of an H-self-similar process with non-Gaussian dimensional distribution. Additionally, we perform an analysis with real data, the Dow-Jones Industrial Average closing values, and analyze its temporal variation of the Hurst exponent.
Citation
Noureddine BENHAMIDOUCHE , Benmehdi Sabah, N. Makarava, , (2011), Bayesian estimation of the self-similarity exponent of the Nile River, Nonlinear Processes in Geophysics, Vol:18, Issue:18, pages:441–446, EGU
- 2009
-
2009
New Method for Constructing Exact Solutions to Nonlinear PDEs
We propose in this paper a new approach to construct exact solutions of nonlinear PDEs. The method used is called ”the travelling profiles method”. The travelling profiles method enables us to obtain many exact solutions to large classes of nonlinear PDEs
Citation
YACINE Arioua , Noureddine BENHAMIDOUCHE , , (2009), New Method for Constructing Exact Solutions to Nonlinear PDEs, International Journal of Nonlinear Science, Vol:7, Issue:4, pages:395-398, World Academic Press, World Academic Union, England, UK
- 2008
-
2008
Exact solutions to some nonlinear PDEs, travelling profile method
We suggest finding exact solutions of equation: \begin{equation*} \frac{\partial u}{\partial t}=(\frac{\partial ^{m}}{\partial x^{m}}u)^{p}, t\geq 0, x\in \mathbb{R}, m, p\in \mathbb{N}, p>1, \end{equation*} by a new method that we call the travelling profiles method. This method allows us to find several forms of exact solutions including the classical forms such as travelling-wave and self-similar solutions.
Citation
Noureddine BENHAMIDOUCHE , , (2008), Exact solutions to some nonlinear PDEs, travelling profile method, Electronic Journal of Qualitative Theory of Differential Equations, Vol:15, Issue:15, pages:01-07, Bolyai Institute, University of Szeged and the Hungarian Academy of Sciences
- 1999
-
1999
Traveling Wavelets approach to the Gravitational Instability theory
We apply the travelling wavelets method to gravitational instability theory for the investigation of large-scale structure formation in cosmology. As the first step of our approach, the method is first applied to the 1D cosmological Euler-Poisson equation system. We test the stability of the linear (evolution) regime in this plane-symmetric case. As a result, our analysis confirms the existence of the linear regime for some configurations of fields describing the evolution of cosmological structures. Moreover, it provides us with estimates for the delay needed for structures of given scale and magnitude to deviate from the linear regime. We also exhibit other configurations for which the linear approximation is not valid at any time. In particular, density defaults (i.e. holes) turn out to be highly non-linear structures that dominate the evolution.
Citation
Noureddine BENHAMIDOUCHE , Bruno Toresani, Roland Triay, , (1999), Traveling Wavelets approach to the Gravitational Instability theory, Monthly Notices of the Royal Astronomical Society, Vol:302, Issue:4, pages:807-820., Oxford Academic