AMAR Berkache
أعمر بركاش
amar.berkache@univ-msila.dz
06 65 37 48 43
- Departement of MECHANICAL ENGINEERING
- Faculty of Technology
- Grade MCA
About Me
Habilitation. in Université de Msila
Research Domains
Refroidissement des aubes des turbines à gaz
Locationعين طاية, الدار البيضاء
الجزائر, ALGERIA
Code RFIDE- 2023
-
master
TALEB RAOUIA , HASNI YOUSRA
ÉTUDE NUMÉRIQUE DE REFROIDISSEMENT DES AUBES DE TURBINE À GAZ PAR FILM DE REFROIDISSEMENT ET PAR IMPACT DE JETS
- 2022
-
master
ELKHAD Khalil , ABASSI Amine
Modélisation Numériques 3D DE L'Ecoulement autour d'un rotor d'une éolienne à axe vertical Savonius
- 2022
-
master
NAIDJA Meriem
MODELISATION NUMERIQUE 3D DE L'ECOULEMENT AUTOUR D'UN ROTOR D’UNE EOLIENNE A AXE HORIZONTAL
- 2022
-
Licence
Bouakar Mohamed El Koli
Etude numérique 2D sur les effets de l'épaisseur de l'aube d'une éolienne Savonius sur la puissance de l'éolienne
- 2022
-
Licence
DJAIDJA NAZIH , MOUSSAI CHOUAIB
ÉTUDE NUMÉRIQUE 2D SUR LES EFFETS DE LA FORME DE L'AUBE D'UNE ÉOLIENNE SAVONIUS SUR LA PUISSANCE DE L'ÉOLIENNE
- 2021
-
master
FERHATI Mohammed El Amin , DEGHFEL Bilal
1 Modélisation numérique 3D de l’écoulement autour d’un rotor d’une éolienne à axe vertical Darrieus
- 2021
-
Licence
Mehaidi rafika , Benmera soumia
Etude numérique 2D sur les effets de la vitesse de d’écolage sur la portance et la trainée d’une aile d’avion
- 2020
-
Licence
Chelali Riadh , Benlachheb Abdelkader
Etude numérique et analytique d’une éolienne SAVONIUS à axe vertical
- 2020
-
Licence
Bennaama sid elkheier , Messaoudi hicham
ETUDE COMPARATIVE DU COEFFICIENT DE PUISSANCE D’UNE EOLIENNE VERTICALE ET D’UNE EOLIENNE HORIZONTALE
- 2019
- 2019
-
Licence
HAMZA Ahmed , AMROUNE Abir
Simulation numérique de l’écoulement d’air autour d’un profil de pale d’éolienne
- 2019
-
master
DJAIT Ahalm , ZAOUI Rabab
Etude et Réalisation d’un éolienne à axe vertical de type SAVONIUS
- 2018
-
master
Nouiri, nadir
Étude d’effet aérodynamique et thermique d’un jet de refroidissement d’une turbine à gaz. Comparaison avec l’expérience
- 2018
-
Licence
LAMINE KHALIL , LALAOUI SIF EDDINE
Calcul numérique de pertes de charge dans une conduite cylindrique
- 2018
-
Licence
Ghazali Aida , Ouchene Baya
Simulation numérique d'un film de refroidissement des aubes des turbines à gaz
- 13-10-2021
- 25-10-2017
- 25-01-2006
- 01-06-1985
- 01-02-1984
- 01-01-1981
- 01-06-1978
-
BAC
BAC Technique mathématique - 1959-04-11 00:00:00
-
AMAR Berkache birthday
- 2023-12-02
-
2023-12-02
Effecgt of the atmospheric boundary layer on a wind turbine
To produce electricity from the wind, horizontal axis turbines exceeding 80 m in height are often used. Entirely immersed in the atmospheric boundary layer, these wind turbines undergo the same changes as the speed of the wind in a wind farm. In this context comes our study for the effect of the atmospheric boundary layer on the energy production for a single wind turbine, then generalize it to all the wind turbines of the farm. Using the logarithmic profile of wind speed in the atmospheric boundary layer, data from two types of wind turbines; NREL-V and ENERCON-E2 are introduced in a computer program for the calculation of the developed power. The results obtained are compared and discussed.
Citation
SAID Zergane , Amar BERKACHE , ,(2023-12-02), Effecgt of the atmospheric boundary layer on a wind turbine,The 1st National Conference on Green Energy,Boumerdes, Algeria
- 2023-10-25
-
2023-10-25
Numerical Simulation of Dynamic Stall in a Vertical Axis Wind Turbine
the impact of dynamic stall on the aerodynamic performance of a Darrieus H three-bladed vertical axis wind turbine. The study employs Reynolds-averaged Navier-Stokes (RANS) simulations with k-ω SST turbulence modeling. Different rotor configurations are studied to assess the influence of dynamic stall on the flow field characteristics and rotor performance. Torque and rotor power are analyzed for various velocity ratio values. Two critical parameters, mesh resolution, and time step size, are carefully examined for their effects on result accuracy. The findings indicate that dynamic stall significantly affects energy production, leading to decreased blade performance during stall conditions. Wind turbines should be designed to operate within dynamic stall limits. Moreover, the power coefficient of the rotor is compared with experimental data, showing an 8% error in this comparison.
Citation
Amar BERKACHE , ,(2023-10-25), Numerical Simulation of Dynamic Stall in a Vertical Axis Wind Turbine,1st National conference on renewable energies and the environment, challenges and applications,Mila
- 2023-10-25
-
2023-10-25
Numerical Simulation of Dynamic Stall in a Vertical Axis Wind Turbine
This paper presents a comprehensive numerical analysis of the impact of dynamic stall on the aerodynamic performance of a Darrieus H three-bladed vertical axis wind turbine. The study employs Reynolds-averaged Navier-Stokes (RANS) simulations with k-ω SST turbulence modeling. Different rotor configurations are studied to assess the influence of dynamic stall on the flow field characteristics and rotor performance. Torque and rotor power are analyzed for various velocity ratio values. Two critical parameters, mesh resolution, and time step size, are carefully examined for their effects on result accuracy. The findings indicate that dynamic stall significantly affects energy production, leading to decreased blade performance during stall conditions. Wind turbines should be designed to operate within dynamic stall limits. Moreover, the power coefficient of the rotor is compared with experimental data, showing an 8% error in this comparison.
Citation
Amar BERKACHE , ,(2023-10-25), Numerical Simulation of Dynamic Stall in a Vertical Axis Wind Turbine,1st National conference on renewable energies and the environment, challenges and applications,Mila
- 2023
-
2023
Effects of Blowing Ratio and The Angle of Inclination of The Jets on The Behavior of The Jet Cross Flow Interaction for Cooling Gas Turbine Blade
A 3D numerical investigation is carried out to analyze film cooling of gas turbine blades. The FLUENT v12 computer code based on the finite volume method is used. The SST turbulence model is implemented in the present work. Our study focuses on the effects of injection ratio and the angle of inclination of the jet on the cooling efficiency. The first results concern the use of turbulence model SST on a NACA0012 airfoil with five holes of 5 mm diameter and spacing between two adjacent holes equal to 4d. The holes are inclined 30°, 45° and 90° in the plane (x, y). The results of the distribution of the static temperature contours depict the uneven distribution on the surface of the profile for a jet inclination angle equal to 90° (detachment of the film just above the hole). The best results are obtained with an angle equal to 30° where it is noted that the air film fits better to the wall to be protected. In second part we have performed the effect of blowing ratio (Ra=0.6, 0.8 and 1.2) on film cooling efficiency on the same NACA profile and with same data. The results show that the best efficiency is obtained for Ra=0.6.
Citation
Amar BERKACHE , ,(2023), Effects of Blowing Ratio and The Angle of Inclination of The Jets on The Behavior of The Jet Cross Flow Interaction for Cooling Gas Turbine Blade,3rd International Conference on Engineering and Applied January 14-17, 2023, Konya, TurkeyNatural Sciences,Turkey
- 2023
-
2023
Turbulence Modelling and It’s Impact on Aerodynamic Performance Prediction of Vertical Axis Wind Turbine – Darrieus
The present study focuses on the effect of turbulence models on the aerodynamic performance of Darrieus-H vertical axis wind turbines with symmetric airfoil NACA0021. Simulations were performed by two different turbulences models, k-ω SST and DESS-A. The results show that the power coefficients predicted by Delayed Eddy simulations (DES) are closer to the experimental data available in the literature than those of the k-ω model of shear stress transport. It is demonstrated that the Delayed Detached Eddy Simulation is regarded as a reliable model to analyze the aerodynamic performance of vertical axis wind turbines.
Citation
Amar BERKACHE , Abdellah. Boumehani, Belkhir. Noura, ,(2023), Turbulence Modelling and It’s Impact on Aerodynamic Performance Prediction of Vertical Axis Wind Turbine – Darrieus,3rd International Conference on Engineering and Applied January 14-17, 2023, Konya, Turkey d Natural Sciences,TUrkey
- 2022
-
2022
Use of the neuronal network in the prediction of the wind on a given site
Inspired by the functioning of neurons in the brain, neural networks are tools widely used in artificial intelligence in solving statistical problems. To this end, in wind energy, the wind is in perpetual variation, in order to model it and predict its intensity from its average annual speed, we present in this study a method based on the use of artificial neural networks. Using the accumulation of a period of 10 years of measurements of the average annual wind speed of a site in the region of Kaberten, a computer program has been developed under MATLAB to estimate the wind in the years to come. This program makes it possible to predict the wind speed at 10 m from the ground in the year following the measurement period. The results obtained by this method on the Kaberten site are analyzed and discussed.
Citation
SAID Zergane , ADMIN Admin , Amar BERKACHE , ,(2022), Use of the neuronal network in the prediction of the wind on a given site,1st International Conference on Innovation Academic Studies,Turkey
- 2022
-
2022
EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF A TURBULENT BOUNDARY LAYER UNDER VARIABLE TEMPERATURE GRADIENTS
In this article we present an experimental and numerical study of the behavior of the boundary layer type viscous flow in the presence of the thermal effect. The flow was held in a three-dimensional field with a uniform infinite velocity in the case of an adiabatic wall with heat input. The presented experimental work was performed in the Thermal Laboratory (LET) of the Prime Institute of Poitiers (France). It describes the analysis of a turbulent boundary layer created in a wind tunnel on the surface of a flat plate covered with epoxy resin. An HP 6012A power supply system was used to provide circulating heat flux to heat the flat plate to 80°C by the Joule effect. The numerical result shows a clear difference in the evolution of the thermal boundary layer between the three temperatures of the wall.
Citation
Amar BERKACHE , ADMIN Admin , SALAH Amroune , ADMIN Admin , ADMIN Admin , Ali Golbaf, Barhm Mohamad, , (2022), EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF A TURBULENT BOUNDARY LAYER UNDER VARIABLE TEMPERATURE GRADIENTS, Journal of the Serbian Society for Computational Mechanics, Vol:16, Issue:1, pages:15, https://www.slideshare.net/BarhmMohamad/experimental-and-numerical-investigations-of-a-turbulent-boundary-layer-under-variable-temperature-gradients
- 2022
-
2022
NUMERICAL MODELING OF DYNAMIC STALL IN A VERTICAL AXIS WIND TURBINE
In this paper, a detailed numerical analysis of the effect of dynamic stall on the aerodynamic performance of a Darrieus H three-bladed vertical axis wind turbine is performed. To do this a series of simulations based on the Reynolds averaged Navier–Stokes (RANS).with turbulence modeling by the k-ω SST model is used. In order to quantify the influence of the dynamic stall on the aerodynamic performance of the rotor, the characteristics of the flow field around the rotor in different configurations are studied. For different velocity ratio values, dynamic magnitudes such as torque and rotor power are presented and analyzed. Also, two parameters are carefully studied: the mesh resolution and the size of the time step. In the analysis, it seems that these parameters affect the accuracy of the results. The numerical results show that dynamic stalling directly affects energy production. The results obtained show that the blades performance decreases when the profile is stalled, it is therefore important to design wind turbines that operate within the limit of dynamic stall. Finally, the numerical results of the power coefficient of the rotor are compared with the experimental data from the bibliography. An error of 8% is observed in this comparison.
Citation
Amar BERKACHE , SALAH Amroune , Abdelouhed AYACHI AMAR, Belkheir NOURA, Abdellah BOUMEHANI, , (2022), NUMERICAL MODELING OF DYNAMIC STALL IN A VERTICAL AXIS WIND TURBINE, ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, Vol:20, Issue:4, pages:9, https://ajme.ro/PDF_AJME_2022_4/L14.pdf
- 2022
-
2022
Numerical investigation of 3D unsteady flow around a rotor of vertical axis wind turbine darrieus type H
This article presents an analysis of the complex and unsteady flow a ssociated with the functioning of the rotor of a vertical axis wind turbine Darrieus - H. In this study, the influence of different numerical aspects on the accuracy of the simulation of the flow around a rotor of three straight blades in rotation is performed, which are the effect of the turbulence modeling, and the effects of the mesh and the time step. The Delayed Detached Eddy Simulation (DDES) approach is used. The aim of this article is to describe and analyze the unsteady flow in 3D predicted numerically considering the effects of arms like blade-arms interference, blade-wake interactions around the Darrieus rotor and the effect of tip vortices. Two-dimensional simulations are used in a preliminary numerical configuration. Then, three-dimensional simulations a re performed t o p recisely determine the characteristics of the complex aerodynamic flow associated with the operation of the wind turbine rotor. The flow field around the rotor is studied for several values of the tip speed ratio, dynamic quantities, such as the torque and the power of the rotor that are presented and analyzed. From the results obtained, it is clear that the approach of the Detached Eddy Simulation with the SST K-ω model can be considered as a reliable prediction. A comparison of the performance of the results showed that the predicted coefficients of performance are very close to the experimental data from the bibliography.
Citation
Amar BERKACHE , , (2022), Numerical investigation of 3D unsteady flow around a rotor of vertical axis wind turbine darrieus type H, Journal of Thermal Engineering, Vol:8, Issue:6, pages:11, https://dergipark.org.tr/tr/pub/thermal/issue/73489/1193932
- 2022
-
2022
Experimental and Numerical Study of Closure Models Applied to Turbine Blade Film Cooling
An experimental and numerical studies of the transverse flow/Row of Jets (R1) are performed. Discrete jets are arranged across a surface exposed to a wall boundary layer of parallel stream, as occurs in discrete-hole cooling systems for turbine blades. The coolant flow characteristics at the hole exits of a film-cooled blade are derived from an earlier analysis where the hole pipes and coolant plenum were also discretized. The experimental model chosen is the ENSMA tunnel facility using flat plate with several staggered rows of holes. A three-dimensional FLUENT code is used to compute the velocity field of mainstream/jets characteristics in interaction on the flat plate. Simulation results are presented for both flat plate and cambered plate represented by three cambered NACA profiles with the key emphasis in this paper on the accuracy of the averaged results and on the film-cooling flow physics to show if the Reynolds averaged equations with turbulence models need anisotropy and realizability corrections to provide correct predictions for the cooling effectiveness. The calculations are performed by solving the governing equations, with turbulence modeling effects, with considering, three-dimensional external flow structure, free-stream turbulence and stream curvature effects. Comparisons between experimental and numerical calculations results are made and discussed for two turbulence models. Some discrepancies are observed in the flow near the wall. These differences are identified and discussed.
Citation
Amar BERKACHE , Rabah DIZENE, ,(2022), Experimental and Numerical Study of Closure Models Applied to Turbine Blade Film Cooling,1st International Conference on Innovative Academic Studies September 10 - 13, 2022, Konya, Turkey,Turkey
- 2019
-
2019
Moteurs à combustion interne cours approfondi
Les moteurs à combustion interne transforment l'énergie chimique du carburant en énergie thermique après combustion de celui-ci. Cette dernière énergie est transformée en énergie mécanique directement utilisée sur les roues des véhicule. De nombreuse techniques modernes sont utilisées afin d'am&liorer le rendement du véhicule et afin de diminuer les polluants nocifs. Parmi ces technique on cite: Technique du sous dimensionnement Techniques d'injection d'essence. Technique de diminution de la formation de polluants. Technique de l'utilisation de la suralimentation des MCI par turbocompresseur
Citation
AmarBERKACHE , ,(2019); Moteurs à combustion interne cours approfondi,Msila University,
- 2019
-
2019
Conversion d'énergie
L’énergie est un élément fondamental de nos sociétés, elle est extraite de ressources primaires, transportées, transformées, stockées… Depuis l’aube de l’humanité, les ressources primaires exploitées ont été le bois, puis les fossiles (charbon, pétrole, gaz), transformées via des combustions et, plus récemment, l’uranium à travers la fission nucléaire ; l’énergie mécanique des cours d’eau et du vent a également été mise à contribution. Des transformations stellaires aux transformations d’énergie terrestres : les conversions d’énergie sont au cœur de nos vies. Dans ce cours on va essentiellement apprendre dans un premier temps, les différentes formes d’énergie naturelles (Solaire, biomasse, géothermie, éolienne, thermique, hydraulique et nucléaire) ainsi que leurs méthodes de leurs transformations en énergie électrique. On montrera comment on établit une chaîne énergétique traduisant des conversions d’énergie. Définir la notion de rendement énergétique. Donner des exemples de conversion de l’énergie dans le domaine de l'électricité. Dans un deuxième temps on va entamer les différents cycles thermodynamiques et leurs utilisations dans les turbines pour la production de l’électricité.
Citation
AmarBERKACHE , ,(2019); Conversion d'énergie,Msila University,
- 2019
-
2019
Moteurs thermiques
La fonction du moteur est de produire une énergie mécanique, en transformant l’énergie chimique grâce à une combustion interne Le moteur thermique reçoit de l’essence, combustible du système d’alimentation carburation. Il réalise une énergie grâce à une compression. Cette combustion est déclenchée par le système d’allumage. Il produit une énergie mécanique disponible au volant moteur. Il rejette des gaz brûlés.
Citation
AmarBERKACHE , ,(2019); Moteurs thermiques,Msila,
- 2018
-
2018
EXPERIMENTAL AND NUMERICAL STUDY APPLIED TO THE PROTECTION OF GAS TURBINES BLADES
Numerical and experimental studies of the transverse flow/Row of Jets are performed. Comparisons between experimental and numerical calculations results are made and discussed for three turbulence models (k-epsilon, SST and RSM). The reduced axial velocity is under predicted by the three models in comparison with experiment (PIV). Nevertheless, RSM and SST models are the best to reproduce the behavior of experimental results.
Citation
Amar BERKACHE , Rabah Dizenz, ,(2018), EXPERIMENTAL AND NUMERICAL STUDY APPLIED TO THE PROTECTION OF GAS TURBINES BLADES,CMP 2018 5th International Colloquium. Corrosion & Material's Protection,Tunisia
- 2017
-
2017
Numerical and experimental investigation of turbine blade film cooling
The blades in a gas turbine engine are exposed to extreme temperature levels that exceed the melting temperature of the material. Therefore, efficient cooling is a requirement for high performance of the gas turbine engine. The present study investigates film cooling by means of 3D numerical simulations using a commercial code: Fluent. Three numerical models, namely k-ε, RSM and SST turbulence models; are applied and then prediction results are compared to experimental measurements conducted by PIV technique. The experimental model realized in the ENSEMA laboratory uses a flat plate with several rows of staggered holes. The performance of the injected flow into the mainstream is analyzed. The comparison shows that the RANS closure models improve the over-predictions of center-line film cooling velocities that is caused by the limitations of the RANS method due to its isotropy eddy diffusivity.
Citation
Amar BERKACHE , Rabah DIZENE, , (2017), Numerical and experimental investigation of turbine blade film cooling, Heat and Mass Transfer Wärme- und Stoffübertragung, Vol:53, Issue:12, pages:18, SPRINGER