BILAL Attallah
عطاالله بلال
bilal.attallah@univ-msila.dz
0772246037
- Departement of ELECTRONICS
- Faculty of Technology
- Grade MCA
About Me
Habilitation universitaire. in Univ de M'sila
Research Domains
Image processing Feature extraction and selection Artificial intelligence
LocationMsila, Msila
Msila, ALGERIA
Code RFIDE- 2023
-
master
Aymen Abdelkade cherif , Mohamed salim Bensalem
A Feature Extraction Method for Iris Recognition System Based on CNN(Transfer Learning
- 2022
-
master
Bentahar Adel , Djouilem Aboubakar
Deep feature extraction and classification for finger vein images
- 2022
- 2021
-
master
Allal bassim , Bouafia fatima ezahra
La Fusion Bimodal pour L’indentification Biométrique
- 2020
-
master
Abdelhafid, Oualid; , Senouci, Abdelkrim
L’identification Biométrique Par Les Veines Des Doigts
- 2019
-
master
Fatma Zohra, MAHDI , Fattoum, TABI
Caractérisation d’empreinte de l’articulation de doigt pour l’authentification des personnes
- 2019
-
master
BENABDI Mouad
Identification des personnes par Les empreintes d’articulation Des doigts en utilisant le deep Learning
- 2019
- 2016
- 15-01-2020
- 08-07-2018
-
Doctorat
Réalisation d’un système d’authentification automatique bimodal par l’iris et la paume de la main - 25-06-2012
- 30-06-2008
- 30-06-2003
- 1985-08-13 00:00:00
-
BILAL Attallah birthday
- 2024-08-14
-
2024-08-14
A sequential combination of convolution neural network and machine learning for finger vein recognition system
Biometric systems play a crucial role in securely recognizing an individual’s identity based on physical and behavioral traits. Among these methods, finger vein recognition stands out due to its unique position beneath the skin, providing heightened security and individual distinctiveness that cannot be easily manipulated. In our study, we propose a robust biometric recognition system that combines a lightweight architecture with depth-wise separable convolutions and residual blocks, along with a machine-learning algorithm. This system employs two distinct learning strategies: single-instance and multi-instance. Using these strategies demonstrates the benefits of combining largely independent information. Initially, we address the problem of shading of finger vein images by applying the histogram equalization technique to enhance their quality. After that, we extract the features using a MobileNetV2 model that has been fine-tuned for this task. Finally, our system utilizes a support vector machines (SVM) to classify the finger vein features into their classes. Our experiments are conducted on two widely recognized datasets: SDUMLA and FV-USM and the results are promising and show excellent rank-one identification rates with 99.57% and 99.90%, respectively.
Citation
Cheyma nadir , BILAL Attallah , BRIK Youcef , , (2024-08-14), A sequential combination of convolution neural network and machine learning for finger vein recognition system, Signal, Image and Video Processing, Vol:18, Issue:, pages:8267–8278, SPRINGER LONDON LTD
- 2023-12-03
-
2023-12-03
ICSTEM
Ensemble Learning VS Convolutional Neural Networks for Multiclass Brain Tumor Classification of MRI Images
Citation
BILAL Attallah , ,(2023-12-03), ICSTEM,ICSTEM,ISTANBUL
Default case...
Default case...
- 2023-10-23
-
2023-10-23
Deep lerning for biometric and biomedical application
Deep lerning for biometric and biomedical application
Citation
BILAL Attallah , ,(2023-10-23), Deep lerning for biometric and biomedical application,Deep lerning for biometric and biomedical application,kualalumbur
Default case...
Default case...
- 2023-06-15
-
2023-06-15
A multi-level fine-tuned deep learning based approach for binary classification of diabetic retinopathy
Diabetes mellitus is a leading cause of diabetic retinopathy (DR), which results in retinal lesions and vision impairment. Untreated DR can lead to blindness, highlighting the need for early diagnosis and treatment. Unfortunately, DR has no cure, and treatments only help to preserve vision. Traditional manual diagnosis of DR retina fundus images by ophthalmologists is time-consuming, costly, and prone to errors. Computer-aided diagnosis methods, such as deep learning, have emerged as popular methods for improving diagnosis and reducing errors. Over the past decade, Convolutional Neural Networks (CNNs) have been shown to perform very well in medical image analysis due to their high ability to extract local features from images. Convolutional neural networks (CNNs) have shown great success in the processing of medical images, including DR color fundus images. In this paper, we proposed a multi-level fine-tuned deep learning based approach for the classification of diabetic retinopathy using three different pre-trained models including: DenseNet121, MobileNetV2, and Xception. The results are provided as classification accuracy, loss metrics, and the performance is compared with state-of-the-art works. The results indicates that the proposed Xception network surpassed its peers’ models as well as state-of-the-art methods by achieving the highest accuracy of 97.95% in binary classification of DR images.
Citation
BILAL Attallah , , (2023-06-15), A multi-level fine-tuned deep learning based approach for binary classification of diabetic retinopathy, Chemometrics and Intelligent Laboratory Systems, Vol:237, Issue:, pages:104820, sciencedirect
- 2022-11-26
-
2022-11-26
Enhancement of diabetic retinopathy classification using attention guided convolution neural network
Damage to the retina from diabetes can lead to permanent vision loss due to a condition known as diabetic retinopathy. In order to avoid this, it is essential to diagnose this disease early. To address these problems, this paper proposes a two-branch Grad-CAM attention-guided convolution neural network (AG-CNN) with initial CLAHE image preprocessing. The AG-CNN first builds a general attention to the entire image with the global branch, in order to further concentrate the system's attention on the localized areas of the problems, the system isolate the important regions (ROIs) of the global image and then feeds them to a local branch. This extensive experiment is based on the APTOS 2019 DR dataset. In order to start, we offer a solid global baseline that, using DenseNet-121 as a starting point, produced average accuracy/AUC values of 0.9746/0.995, respectively. The average accuracy and AUC of the AG-CNN are increased to 0.9848 and 0.998, respectively, after creating the local branch. which represents a new state-of-the-art in the field.
Citation
Mohamed Abderaouf Moustari , BRIK Youcef , BILAL Attallah , ,(2022-11-26), Enhancement of diabetic retinopathy classification using attention guided convolution neural network,ICATEEE2022,M'sila, Algeria
Default case...
Default case...
Default case...
Default case...
- 2022
-
2022
Ear recognition using ensemble of deep learning and machine learning
Ear recognition using ensemble of deep learning and machine learning
Citation
BILAL Attallah , ,(2022), Ear recognition using ensemble of deep learning and machine learning,ICCTA2022,Alexendrie-Egypt
- 2022
-
2022
Deep learning based framwork for automatic diabetic retinopathy detection
Deep learning based framwork for automatic diabetic retinopathy detection
Citation
BRIK Youcef , BILAL Attallah , Ishaq AICHE , ,(2022), Deep learning based framwork for automatic diabetic retinopathy detection,ICCTA 2022,Alexendrie_Egypt
- 2022
-
2022
Finger vein based cnn for human recognition
Finger vein based cnn for human recognition
Citation
Cheyma nadir , BILAL Attallah , BRIK Youcef , ,(2022), Finger vein based cnn for human recognition,ICATEEE2022,M'sila-Algeria
- 2022
-
2022
Transfer learning for diabetic retinopathy detection
Transfer learning for diabetic retinopathy detection
Citation
Ishaq AICHE , BRIK Youcef , BILAL Attallah , ,(2022), Transfer learning for diabetic retinopathy detection,ICATEEE2022,M'sila-Algeria
- 2022
-
2022
Brain tumor classification based deep transfer learning
Brain tumor classification based deep transfer learning
Citation
BILAL Attallah , BRIK Youcef , oussama.bougeurra@univ-msail.dz, ,(2022), Brain tumor classification based deep transfer learning,ICATEEE2022,M'sila_Algeria
- 2022
-
2022
Transfer learning approche for alzhimer's dicease diagnosis using mri image
Transfer learning approche for alzhimer's dicease diagnosis using mri image
Citation
BRIK Youcef , BILAL Attallah , DJERIOUI Mohamed , rafik.zouaoui@univ-msila.dz, ,(2022), Transfer learning approche for alzhimer's dicease diagnosis using mri image,ICATEEE2022,M'sila_Algeria
- 2022
-
2022
Ear Recognition using Ensemble of Deep Features and Machine Learning Classifiers
Ear Recognition using Ensemble of Deep Features and Machine Learning Classifiers
Citation
Cheyma nadir , BILAL Attallah , BRIK Youcef , ,(2022), Ear Recognition using Ensemble of Deep Features and Machine Learning Classifiers,ICCTA 2022,Alexandria, Egypt
- 2021-12-17
-
2021-12-17
An efficient prediction system for diabetes disease based on deep neural network
One of the main reasons for disability and premature mortality in the world is diabetes disease, which can cause different sorts of damage to organs such as kidneys, eyes, and heart arteries. The deaths by diabetes are increasing each year, so the need to develop a system that can effectively diagnose diabetes patients becomes inevitable. In this work, an efficient medical decision system for diabetes prediction based on Deep Neural Network (DNN) is presented. Such algorithms are state-of-the-art in computer vision, language processing, and image analysis, and when applied in healthcare for prediction and diagnosis purposes, these algorithms can produce highly accurate results. Moreover, they can be combined with medical knowledge to improve decision-making effectiveness, adaptability, and transparency. A performance comparison between the DNN algorithm and some well-known machine learning techniques as well as the state-of-the-art methods is presented. The obtained results showed that our proposed method based on the DNN technique provides promising performances with an accuracy of 99.75% and an F1-score of 99.66%. This improvement can reduce time, efforts, and labor in healthcare services as well as increasing the final decision accuracy.
Citation
Tawfiq Beghriche , DJERIOUI Mohamed , BRIK Youcef , BILAL Attallah , , (2021-12-17), An efficient prediction system for diabetes disease based on deep neural network, Complexity, Vol:2021, Issue:1, pages:1-14, Hindawi
- 2021
-
2021
Efficient heart disease diagnosis based on twin support vector machine
Heart disease is the leading cause of death in the world according to the World Health Organization (WHO). Researchers are more interested in using machine learning techniques to help medical staff diagnose or detect heart disease early. In this paper, we propose an efficient medical decision support system based on twin support vector machines (Twin-SVM) for heart disease diagnosing with binary target (i.e. presence or absence of disease). Unlike conventional support vector machines (SVM) that finds only one optimal hyper- plane for separating the data points of first class from those of second class, which causes inaccurate decision, Twin-SVM finds two non-parallel hyper-planes so that each one is closer to the first class and is as far from the second class as possible. Our experiments are conducted on real heart disease dataset and many evaluation metrics have been considered to evaluate the performance of the proposed method. Furthermore, a comparison between the proposed method and several well-known classifiers as well as the state-of-the-art methods has been performed. The obtained results proved that our proposed method based on Twin-SVM technique gives promising performances better than the state-of-the-art. This improvement can seriously reduce time, materials, and labor in healthcare services while increasing the final decision accuracy.
Citation
BRIK Youcef , DJERIOUI Mohamed , BILAL Attallah , , (2021), Efficient heart disease diagnosis based on twin support vector machine, DIAGNOSTYKA, Vol:22, Issue:3, pages:3-11, PTDT
- 2019
-
2019
Neighborhood Component Analysis and Support Vector Machines for Heart Disease Prediction
Nowadays, one of the main reasons for disability and mortality premature in the world is the heart disease, which make its prediction is a critical challenge in the area of healthcare systems. In this paper, we propose a heart disease prediction system based on Neighborhood Component Analysis (NCA) and Support Vector Machine (SVM). In fact, NCA is used for selecting the most relevant parameters to make a good decision. This can seriously reduce the time, materials, and labor to get the final decision while increasing the prediction performance. Besides, the binary SVM is used for predicting the selected parameters in order to identify the presence/absence of heart disease. The conducted experiments on real heart disease dataset show that the proposed system achieved 85.43% of prediction accuracy. This performance is 1.99% higher than the accuracy obtained with the whole parameters. Also, the proposed system outperforms the state-of-the-art heart disease prediction.
Citation
DJERIOUI Mohamed , BRIK Youcef , Mohamed Ladjal , BILAL Attallah , , (2019), Neighborhood Component Analysis and Support Vector Machines for Heart Disease Prediction, Ingénierie des Systèmes d’Information (ISI), Vol:24, Issue:6, pages:591-595, International Information and Engineering Technology Association (IIETA)
- 2019
-
2019
Superpixel-based Zernike moments for palm-print recognition
In the contemporary period, significant attention has been focused on the prospects of innovative personal recognition methods based on palm-print biometrics. However, diminished local consistency and interference from noise are only some of the obstacles that hinder the most common methods of palm-print imaging such as the grey texture and other low-level of the palm. Nevertheless, the development of the process and tackling of the obstacles faced have a potential solution in the form of high-level characteristic imaging for palm-print identification. In this study, Zernike moments are used for acquiring superpixel features that are spiral scanned images, which is an innovative recognition method. By using the extreme learning machine, the inter- and intra-similarities of the palm-print feature maps are determined. Our experiments yield good results with an accuracy rate of 97.52 and an equal error rate of 1.47% on the palm-print PolyU database.
Citation
BILAL Attallah , , (2019), Superpixel-based Zernike moments for palm-print recognition, International Journal of Electronic Security and Digital Forensics, Vol:11, Issue:4, pages:420 - 433, INDERSCIENCE Publisher
- 2019
-
2019
Fusing Palmprint, Finger-knuckle-print for Bi-modal Recognition System Based on LBP and BSIF
Multimodal biometrics is an evolving technology in the fields of security. Biometrics system reduces the effort of remember a memorable password. Multimodal biometrics system uses two or more traits for efficient recognition. This paper presents a hand biometric system by fusing information of palmprint and finger knuckle. To this end, BSIF ( Binarized Statistical Image Features) filter and LBP (Local binary patterns) coefficients are employed to obtain the Finger-knuckle-print and palm-print traits, and subsequently selection of the features vector is conducted with PCA (Principal Component Analysis) transforms in higher coefficients. To match the finger knuckle or palm-print feature vector, the (ELM) Extreme learning machine is applied. According to the experiment outcomes, the proposed system not only has a significantly high recognition rate but it also affords greater security compared to the single biometric system.
Citation
BILAL Attallah , BRIK Youcef , DJERIOUI Mohamed , ABDELWAHHAB BOUDJELAL , ,(2019), Fusing Palmprint, Finger-knuckle-print for Bi-modal Recognition System Based on LBP and BSIF,International Conference on Image and Signal Processing and their Applications,Mostaganem, Algeria, Algeria
- 2019
-
2019
Finger-knuckle-print, Plamprint and Fingerprint for Multimodal Recognition System Based on mRMR features selection
A Biometrics identification system is refers to the automatic recognition of individual person based on their characteristics. Basically biometrics system has two broad areas namely unimodal biometric system and multimodal biometric system. However, a reliable recognition system requires multiple resources [1]. Although multimodality improves the accuracy of the systems, it occupies a large memory space and consumes more execution time considering the collected information from different resources. Therefore we have considered the feature selection[2], that is, the selection of the best attributes that enhances the accuracy and reduce the memory space as a solution. As a result, acceptable recognition performances with less forge and steal can be guaranteed. In this work we propose an identification system using multimodal fusion of finger-knuckle-print, fingerprint and palmprint by adopting several techniques in feature level for multimodal fusion[3]. A feature level fusion and selection is proposed for the fusion of these three biological traits. The proposed system has been tested on the largest publicly available PolyU [4] and Delhi FKP[5] databases. It has shown good performance.
Citation
BILAL Attallah , Hamza BENNACER , Mohamed Ladjal , BRIK Youcef , Youssef Chahir, ,(2019), Finger-knuckle-print, Plamprint and Fingerprint for Multimodal Recognition System Based on mRMR features selection,IC2MAS19,Istanbul-Turkey
- 2019
-
2019
Feature extraction in palmprint recognition using spiral of moment skewness and kurtosis algorithm
Because of their high recognition rates, coding-based approaches that use multispectral palmprint images have become one of the most popular palmprint recognition methods. This paper describes a new multispectral palmprint recognition method that aims to further improve the performance of coding-based approaches by focusing on the local binary pattern (LBP) filters and spiral moments features. The final feature map is derived through a staged process of creating a composite of spiral and LBP features by fusing them together and passing the features through the minimum redundancy maximum relevance transformers. Using Hamming distances, the inter- and intra-similarities of the palmprint feature maps are determined. The experimental technique was evaluated using the available data on the IITD, MSPolyU and PolyU PPDB databases. The results indicate that the method achieved high levels of accuracy in the identification and verification modes. Furthermore, this method outperforms the existing advanced techniques.
Citation
BILAL Attallah , Amina Serir, Youssef Chahir, , (2019), Feature extraction in palmprint recognition using spiral of moment skewness and kurtosis algorithm, Pattern Analysis and Applications, Vol:22, Issue:3, pages:1197–1205, Springer Nature
- 2019
-
2019
Heart disease prediction using neighborhood component analysis and support vector machines
In this paper, we propose a heart disease prediction system based on Neighborhood Component Analysis (NCA) and Support Vector Machine (SVM). In fact, NCA is used for selecting the most relevant parameters to make a good decision. This can seriously reduce the time, materials, and labor to get the final decision while increasing the prediction performance. Besides, the binary SVM is used for predicting the selected parameters in order to identify the presence/absence of heart disease. The conducted experiments on real heart disease dataset show that the proposed system achieved 85.43% of prediction accuracy. This performance is 1.99% higher than the accuracy obtained with the whole parameters. Also, the proposed system outperforms the state-of-the-art heart disease prediction.
Citation
DJERIOUI Mohamed , BRIK Youcef , Mohamed Ladjal , BILAL Attallah , Youssef Chahir, ,(2019), Heart disease prediction using neighborhood component analysis and support vector machines,The VIIIth International Workshop on Representation, analysis and recognition of shape and motion FroM Imaging data (RFMI 2019),Tunisia
- 2018
-
2018
Geometrical Local Image Descriptors for Palmprint Recognition
A new palmprint recognition system is presented here. The method of extracting and evaluating textural feature vectors from palmprint images is tested on the PolyU database. Furthermore, this method is compared against other approaches described in the literature that are founded on binary pattern descriptors combined with spiral-feature extraction. This novel system of palmprint recognition was evaluated for its collision test performance, precision, recall, F-score and accuracy. The results indicate the method is sound and comparable to others already in use.
Citation
BILAL Attallah , Youssef Chahir, Amina Serir, ,(2018), Geometrical Local Image Descriptors for Palmprint Recognition,ICISP 2018,Cherbourg-France
- 2018
-
2018
Réalisation d’un système d’authentification automatique bimodal par l’iris et la paume de la main
La biométrie est une technique globale visant la reconnaissance automatique des individus à partir de leurs caractéristiques physiologiques et/ou comportementales. Dans cette thèse, nous abordons plusieurs points importants concernant la biométrie bimodale. Nous nous proposons de réaliser un système d’authentification automatique à partir de la paume de la main et l'iris de l'œil. Le système proposé, doté de plusieurs modules, tire avantage de différents procédés pour réduire les taux de fausses acceptations et de faux rejets. Après avoir d’abord dressé un état de l’art des différents systèmes biométriques mono-modaux, nous faisons le lien entre les bases de données existantes, la sélection de caractéristiques pertinentes de dimensionsréduites pour identifier l'iris ou l'empreinte palmaire ainsi que leur fusion bimodale. En première partie, nous présentons nos différentes contributions pour l’analyse d’empreinte palmaire. Nosapproches consistent à combinerdesdescripteurs de texture locaux (tels que LBP, BSIF, LPQ, Fusion)etdes descripteurspar ondelettes (Gabor,Haar) à différents niveaux, pour l'extraction des lignes de la paume de la main. Dans notre étude, nous mettons en évidence les capacités de ces transformées à caractériser les textures oscillatoires ainsi que les courbures en vue de l'extraction de signatures biométriques robustes.Nous proposons également une méthode de caractérisation basée sur un parcours spiral des moments statistiques (moyenne, variance, asymétrie, aplatissement). En outre, nous avons affiné la caractérisation par la fusion de descripteurs de texture, suivi par une sélection des caractéristiques en exploitant les deux transforméesACP et mRMR. En seconde partie, nous abordonsl'analyse de l’iris de l'œil.Nous proposons de combiner l'approche de Daugman avec une analyse multi-échelle (multi-résolution et multi-directionnelle) afin de mieux caractériser les structures radiales de l'iris et surmonter les problèmes inhérents à l'acquisition (présence de lentilles, fermeture partielle des paupières, changement de contraste) et à la mise en correspondance. Dans la dernière partie, la fusion et la sélection des caractéristiques signatures biométriques issues des deux modalités (Iris et empreinte palmaire) ainsi que des analyses statistiques à grande échelle des scores de similarité provenant de chaque modalité, ont permis une connaissance approfondie des scores issus des systèmes biométriques étudiés Nous avons utilisé les deuxclassifieurs (KNN, ELM)etleurs performances ont été comparées aux méthodes existantes. Les résultats trouvés ontmontré l’efficacité des algorithmes proposés en termes de précision.
Citation
BILALAttallah , ,(2018); Réalisation d’un système d’authentification automatique bimodal par l’iris et la paume de la main,USTHB,
- 2018
-
2018
Histogram of gradient and binarized statistical image features of wavelet subband-based palmprint features extraction
Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.
Citation
BILAL Attallah , , (2018), Histogram of gradient and binarized statistical image features of wavelet subband-based palmprint features extraction, Journal of Electronic Imaging, Vol:26, Issue:6, pages:1017-9909, SPIE
- 2018
-
2018
PET image reconstruction based on Bayesian inference regularised maximum likelihood expectation maximisation (MLEM) method
A better quality of an image can be achieved through iterative image reconstruction for positron emission tomography (PET) as it employs spatial regularisation that minimises the difference of image intensity among adjacent pixels. In this paper, the Bayesian inference rule is applied to devise a novel approach to address the ill-posed inverse problem associated with the iterative maximum-likelihood Expectation-Maximisation (MLEM) algorithm by proposing a regularised constraint probability model. The proposed algorithm is more robust than the standard MLEM and in background noise removal with preserving edges to suppress the out of focus slice blur, which is the existent image artefact. The quality measurements and visual inspections show a significant improvement in image quality compared to conventional MLEM and the state-of-the-art regularised algorithms.
Citation
ABDELWAHHAB BOUDJELAL , BILAL Attallah , Zoubeida Messali, , (2018), PET image reconstruction based on Bayesian inference regularised maximum likelihood expectation maximisation (MLEM) method, International Journal of Biomedical Engineering and Technology, Vol:24, Issue:7, pages:337 - 354, inderscience
- 2018
-
2018
Improved Simultaneous Algebraic Reconstruction Technique Algorithm for Positron-Emission Tomography Image Reconstruction via Minimizing the Fast Total Variation
Contexte Il y a eu des progrès considérables dans l'instrumentation de mesure de données et les méthodes informatiques permettant de générer des images des données de TEP mesurées. Ces méthodes informatiques ont été développées pour résoudre le problème inverse, aussi appelé problème de « reconstruction de l'image à partir des projections ». But Dans cet article, les auteurs proposent un algorithme modifié pour la technique de reconstruction algébrique simultanée (SART), de façon à améliorer la qualité de la reconstruction de l'image en incorporant la minimisation de la variation totale (TV) dans l'algorithme itératif de SART. Méthodologie L'algorithme SART met à jour l'image estimative en faisant une projection avant de l'image sur l'espace du sinogramme. La différence entre le sinogramme estimé et le sinogramme donné est ensuite rétroprojetée sur le domaine de l'image. Cette différence est ensuite soustraite de l'image initiale pour obtenir une image corrigée. La minimisation rapide de la variation totale (FTV) est appliquée à l'image obtenue dans l’étape SART. La deuxième étape est le résultat obtenu de la mise à jour FTV précédente. Les étapes de SART et de minimisation FTV sont conduites de façon itérative, en alternance. Cinquante itérations ont été appliquées à l'algorithme SART utilisé dans chacune des méthodes fondées sur la régularisation. En plus de l'algorithme SART conventionnel, le lissage spatial a été utilisé pour améliorer la qualité de l'image. Toutes les images ont été produites en format 128 x 128 pixels. Résultats L'algorithme proposé a préservé les bordures avec succès. Un examen détaillé révèle que les algorithmes de reconstruction étaient différents; par exemple, l'algorithme SART et l'algorithme SART-FTV proposé ont préservé efficacement les bordures chaudes des lésions, tandis que les artefacts et les déviations étaient plus susceptibles d'apparaître dans l'algorithme ART que dans les autres algorithmes. Conclusion En comparaison de l'algorithme SART standard l'algorithme proposé réussit mieux à éliminer le bruit ambiant tout en préservant les bordures pour supprimer les artefacts existants. Les mesures de qualité et l'inspection visuelle montrent une amélioration significative de la qualité de l'image comparativement à l'algorithme SART traditionnel et à l'algorithme de technique de reconstruction algébrique (ART).
Citation
ABDELWAHHAB BOUDJELAL , BILAL Attallah , ZoubeidaMessali, AbderrahimElmoataz, , (2018), Improved Simultaneous Algebraic Reconstruction Technique Algorithm for Positron-Emission Tomography Image Reconstruction via Minimizing the Fast Total Variation, Journal of Medical Imaging and Radiation Sciences, Vol:48, Issue:4, pages:385-393, ELSEVIER