BELKACEM Aoufi
بلقاسم عوفي
belkacem.aoufi@univ-msila.dz
0675372178
- General Secretariat -- Faculty of Technology
- Faculty of Technology - Administrative Staff
- Grade Employee
About Me
Location
Msila, Msila
Msila, ALGERIA
Code RFIDE- 1973-10-12 00:00:00
-
BELKACEM Aoufi birthday
- 2025-11-11
-
2025-11-11
3D Tolerance Analysis and Propagation Using Jacobian–Torsor in a Conical Assembly
This study addresses the increasing complexity introduced by dimensional and geometrical standards, which require diverse tolerances to convey design intent accurately. Mechanical products, typically comprising multiple components, demand strict control of dimensional and geometrical variations to guarantee standardised production and functional performance. The objective is to develop a reliable tolerance analysis capable of defining admissible part variations whilst ensuring global assembly requirements. The methodology relies on mathematical models that capture the cumulative effect of deviations, with emphasis on the Jacobian–torsor approach: the Jacobian matrix is employed for tolerance propagation, while the torsor model represents small displacement torsors (SDT). The SDT framework provides a rigorous basis for analysing tolerances and deviations across six degrees of freedom. A case study involving conical contact structures is presented to illustrate three-dimensional tolerance propagation. The findings demonstrate that the proposed approach enhances accuracy and reliability, thereby supporting more robust and efficient mechanical design and manufacture. Keywords: Geometrical tolerancing, Geometrical tolerancing, Tolerance analysis, Small displacement torsor (SDT), Jacobian–torsor method (J-T), Conical contact structures, Mechanical design optimisation
Citation
Mustapha ARSLANE , Belkacem AOUFI , Mohamed SLAMANI , Hacene Ameddah, ,(2025-11-11), 3D Tolerance Analysis and Propagation Using Jacobian–Torsor in a Conical Assembly,Proceedings of the 2nd Conference on Mechanical, Energy and Material Engineering, CMEME 2025,Université de Biskra
- 2025-10-29
-
2025-10-29
Unified Jacobian–Torsor Framework for Automatic Tolerancing and Geometric Variation Analysis
In the field of design and manufacturing, three-dimensional (3D) tolerancing plays a crucial role in ensuring product functional compliance under increasingly stringent requirements. This work proposes a deterministic approach based on the unified Jacobian–Torsor model, which enables accurate modeling and analysis of the propagation of geometric and dimensional deviations in mechanical assemblies. The method aims both to transform functional requirements into exploitable geometric principles and to reduce the uncertainties associated with traditional empirical approaches. A case study involving an insertion assembly of two components is presented to illustrate the effectiveness of the model in terms of accuracy and ease of use for defining tolerance zones. The results demonstrate that this approach facilitates automatic tolerancing, while enhancing design robustness, calculation accuracy, and overall process efficiency. Keywords: 3D Tolerancing; Jacobian–Torsor Model;Deterministic Analysis; Automatic Tolerancing; Geometric Variations; Mechanical Assemblies; Design Robustness
Citation
Mustapha ARSLANE , Belkacem AOUFI , Mohamed SLAMANI , Hacene Ameddah, ,(2025-10-29), Unified Jacobian–Torsor Framework for Automatic Tolerancing and Geometric Variation Analysis,1sh National Seminar on Structural Mechanics and Materials (SNMSM’25),Université Mohamed Boudiaf / M'sila
- 2025-09-18
-
2025-09-18
Influence of Heat Treatments on the Fatigue Resistance of Recycled Steels with a Low Environmental Footprint
In the context of the transition toward a more sustainable industry, this study investigates the fatigue behavior of carbon steel subjected to various heat treatments, with the goal of developing solutions that combine mechanical efficiency and environmental responsibility. The primary objective is to enhance mechanical properties—particularly fatigue resistance—while minimizing the material’s environmental footprint. The research focuses on recycled or low-alloy steels, whose performance is improved through suitable heat treatments, thereby avoiding the use of highly polluting or energy-intensive alloying elements. A comprehensive experimental characterization is carried out to assess the microstructure, hardness, and fatigue life of the treated samples. Simultaneously, a life cycle assessment (LCA) is conducted to quantify the overall environmental impact of the materials. The expected outcomes aim to demonstrate that these optimized steels represent a viable alternative for demanding industrial applications, while significantly contributing to the reduction of CO₂ emissions in the metallurgical sector. Keywords: sustainable industry, fatigue resistance, metallurgical processes, heat treatment, microstructure, life cycle assessment (LCA), CO₂ emission reduction.
Citation
Mustapha ARSLANE , Belkacem AOUFI , Mohamed SLAMANI , Hacene Ameddah, ,(2025-09-18), Influence of Heat Treatments on the Fatigue Resistance of Recycled Steels with a Low Environmental Footprint,THE 1st NATIONAL CONFERENCE ON CHEMISTRY AND ASSOCIATED SCIENCES (1st NCC-AS),Higher School of Teachers in Bousaada, M’Sila, Algeria
- 2025-02-17
-
2025-02-17
Optimisation des Tolérances Géométriques des Formes Complexes par Rétro Conception Basée sur l'Émission Laser
L’ingénierie inverse est essentielle pour analyser et valider les tolérances géométriques des formes complexes. Cette étude met en œuvre un processus de rétro-conception avec Geomagic Design X, un logiciel spécialisé dans la conversion de scans 3D en modèles numériques précis via la technologie laser. Une pièce complexe a été scannée en 3D, générant un modèle maillé, ensuite converti en modèle solide pour une fabrication de haute précision. Les écarts entre le maillage, le modèle solide et les tolérances spécifiées ont été rigoureusement analysés. Les résultats montrent que l’intégration de la modélisation de surface et de la conception solide, grâce aux outils d’ingénierie inverse, optimise la gestion des tolérances des formes complexes, assurant une précision accrue. Cette approche démontre l’efficacité de la rétro-conception pour répondre aux exigences de fabrication modernes. Mots clés : L'ingénierie inverse, tolérances géométriques, rétro-conception, scan 3D, l'émission du laser, formes complexes.
Citation
Belkacem AOUFI , Mohamed SLAMANI , Mustapha ARSLANE , Hacene Ameddah, ,(2025-02-17), Optimisation des Tolérances Géométriques des Formes Complexes par Rétro Conception Basée sur l'Émission Laser,2nd National seminar of Physics, Chemistry and their Applications NSPCA'25,University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj - Algeria
- 2024-08-01
-
2024-08-01
An advanced framework for tolerance analysis of cam‑clamping devices integrating unified Jacobian–Torsor model, Monte Carlo simulation, and bootstrap technique
Uncertainty analysis is essential for estimating variability within specified tolerances, particularly in three-dimensional (3D) assembly tolerance analysis. This study introduces a novel analytical approach for assessing assembly deviations, integrating the Jacobian–Torsor model with the bootstrap technique. The Jacobian–Torsor model combines the efficiency of representing tolerances with the adaptability of the Jacobian matrix for their propagation. This computerized method, based on the unified Jacobian–Torsor approach, focuses on cam-clamping devices, specifically the fastening flange component. The novelty of this study lies in the application of the bootstrap technique, a Monte Carlo Simulation approach, for uncertainty analysis to estimate variability within specified tolerances. A comprehensive comparison of statistical methods—bootstrap, stratified sampling, Bayesian statistics, and analytical methods—demonstrates the advantages of the Bootstrap approach. The results emphasize its user-friendliness and precision, even with complex shapes. The primary aim is to highlight the utility of the unified Jacobian–Torsor method for tolerance analysis. An experiment involving the fastening flange assembly illustrates the practical application of this approach. The findings confirm the effectiveness of the proposed method, demonstrating its accuracy and reliability for cam-clamping devices in real-world assembly scenarios with intricate geometries.
Citation
Belkacem AOUFI , Mustapha ARSLANE , , (2024-08-01), An advanced framework for tolerance analysis of cam‑clamping devices integrating unified Jacobian–Torsor model, Monte Carlo simulation, and bootstrap technique, The International Journal of Advanced Manufacturing Technology, Vol:10, Issue:4234, pages:1111_33333, Springer