NEDJMA Lahmar
لحمر نجمة
nedjma.lahmar@univ-msila.dz
0794353260
- Departement of Chemistry
- Faculty of Sciences
- Grade PHd
About Me
Sciences de la Matière
Research Domains
Chemistry
FiliereChimie
Environmental Chemistry
Location
Msila, Msila
Msila, ALGERIA
Code RFIDE- 1994-05-27 00:00:00
-
NEDJMA Lahmar birthday
- 2022
-
2022
Implication de l'ion persulfate dans le traitement d'effluents
La décontamination par persulfate fait partie de la technologie d’oxydation chimique in situ (ISCO), cette dernière utilise des composés tels que le permanganate, le peroxyde d’hydrogène et l’ozone pour la dégradation des polluants. L’ion persulfate, via le processus radicalaire ou le transfert direct d'électrons, est un outil très puissant pour le traitement d'une large gamme de polluants, notamment les oléfines halogénées, les BTEX (benzène, toluène, éthylbenzène et xylènes), les produits chimiques perfluorés, les phénols, les produits pharmaceutiques, les produits inorganiques et les pesticides. Dans le présent travail nous étudions la dégradation de deux colorants, dont l’ion persulfate réagit différemment. La rhodamine B, est un colorant cationique réagit par transfert électronique avec le persulfate, et Le bleu de bromothymol qui réagit par voie radicalaire. La dégradation des deux colorants en solution aqueuse par le persulfate est étudiée. Les effets des concentrations initiales de persulfate et de colorant, de la force ionique, de la température et des ions catalytiques sur l'efficacité de la dégradation des deux colorants par le persulfate sont examinés. En parallèle, le calcul théorique a été utilisé pour estimer la concentration stationnaire du radical SO4*- et déterminer ensuite les valeurs de constante de vitesse entre le radical sulfate et les colorants d’une part et d’autre part entre l’ion persulfate et la rhodamine B.
Citation
NEDJMA Lahmar , ,(2022), Implication de l'ion persulfate dans le traitement d'effluents,Le 2iéme Séminaire International en Génie Industriel et Mathématiques Appliquées,Université 20 août 1955-Skikda-Algérie
- 2022
-
2022
ENERGIE SOLAIRE THERMIQUE POUR LA DEPOLLUTION DES SOLS
Dans ce travail, nous présentons un nouveau procédé d’assainissement des sols, qui fonctionne de manière autonome. Ce procédé consiste à laver en boucle un sol pollué par évaporation d'eau en utilisant l'énergie solaire thermique. Cette dernière désigne l'utilisation de l'énergie thermique du rayonnement solaire pour chauffer un fluide (liquide ou gaz), à l'aide d’un capteurs solaires thermiques. Afin de réaliser ce procédé, notre étude consiste à développer et trouver la bonne configuration du réacteur qui permettra le passage de l'eau, sans perte, de l'état liquide à l'état gazeux. Notre système est composé d'un capteur solaire pour l'évaporation de l'eau et d'un réservoir pour la décontamination du sol, avec un passage qui assure la circulation de l'eau. L'effet du débit d'eau, de la température du distillat et du sol, de la température du bassin et du degré d'inclinaison de la surface transparente sur la décontamination du sol sont étudiés.
Citation
Mokhtar DJEHICHE , NEDJMA Lahmar , ,(2022), ENERGIE SOLAIRE THERMIQUE POUR LA DEPOLLUTION DES SOLS,Séminaire International en Génie Industriel et Mathématiques Appliquées (SIGIMA’2022),université de Skikda
- 2022
-
2022
Implication de l’ion persulfate dans le traitement d’effluents industriels
La décontamination par persulfate fait partie de la technologie d’oxydation chimique in situ (ISCO), cette dernière utilise des composés tels que le permanganate, le peroxyde d’hydrogène et l’ozone pour la dégradation des polluants. L’ion persulfate, via le processus radicalaire ou le transfert direct d'électrons, est un outil très puissant pour le traitement d'une large gamme de polluants, notamment les oléfines halogénées, les BTEX (benzène, toluène, éthylbenzène et xylènes), les produits chimiques perfluorés, les phénols, les produits pharmaceutiques, les produits inorganiques et les pesticides. Dans le présent travail nous étudions la dégradation de deux colorants, dont l’ion persulfate réagit différemment. La rhodamine B, est un colorant cationique réagit par transfert électronique avec le persulfate, et Le bleu de bromothymol qui réagit par voie radicalaire. La dégradation des deux colorants en solution aqueuse par le persulfate est étudiée. Les effets des concentrations initiales de persulfate et de colorant, de la force ionique, de la température et des ions catalytiques sur l'efficacité de la dégradation des deux colorants par le persulfate sont examinés. En parallèle, le calcul théorique a été utilisé pour estimer la concentration stationnaire du radical SO4*- et déterminer ensuite les valeurs de constante de vitesse entre le radical sulfate et les colorants d’une part et d’autre part entre l’ion persulfate et la rhodamine B.
Citation
NEDJMA Lahmar , Mokhtar DJEHICHE , ,(2022), Implication de l’ion persulfate dans le traitement d’effluents industriels,Séminaire International en Génie Industriel et Mathématiques Appliquées (SIGIMA’2022),université de Skikda
- 2022
-
2022
Physicochemical properties and mineral composition of natural yellow clay ( M'sila ).
Clays are used in a variety of fields (construction, pharmacy, agriculture, etc.), which motivates experts and scientists to study the physicochemical properties of clay and its mineral composition, and to improve its use in specific fields. Due to its importance in the field of application properties, our research aims to study the mineral composition of natural clays and their physicochemical properties. Physicochemical properties were studied - we only got a yellow clay with a pH of 7.47, probably due to soluble and alkaline salts such as bicarbonates or silicates of alkali metals (usually in the composition of clays). The yellow clay (1.38%) has a lower moisture (W %) value, indicating that it is not hygroscopic. The Ig swelling index (%) of yellow clay (1.55%) is easy to swell. Clay samples are classified into fine, medium, and coarse sand by particle size (as classified by ASTM) and their diameter. The clay characterization method revealed by FTIR was consistent with the results revealed by the analysis. The existence of kaolinite and quartz is well confirmed (characteristics of Si-O bond deformation vibrational bands and Si-O stretching vibrations of quartz at 470.4 cm-1, 712 cm-1 and 798.4 cm-1).The thermal stability of the clay was tracked by TGA thermogravimetric analysis which made it possible to track the mass loss of the sample as a function of temperature (total yellow clay loss was about 5.56%). X-ray diffraction (XRD) is used to identify the mineral phases present in the sample. Keywords: clay, physicochemical properties, mineralogical compositions.
Citation
KARIMA Larkat , Azzedine BENYAHIA , Nadir DEGHFEL , NEDJMA Lahmar , meftah.allal@unuv-biskra.dz, Belfar issam, brahim ben saoucha, ,(2022), Physicochemical properties and mineral composition of natural yellow clay ( M'sila ).,2nd International Conference on Engineering and Applied Natural Sciences,Konya, Turkey
Default case...
- 2021
-
2021
Kinetic model for sulfate radical oxidation of bromothymol blue
The degradation kinetics of bromothymol blue (BBT) in the presence of heated potassium persulfate (KPS) in acidic medium (pH3) was studied. Based on our calculation and simulation methods, we determined, for the first time, the rate constant of the reaction of BBT with sulfate radicals (k6) at 60 °C. By carrying out several experiences at various conditions of concentrations and temperature, we obtain an average value of k6 equal to (3.3 ± 0.3) x 108 M-1 s-1 and an activation energy equal to18.84 kJ/mol. On the other hand, we have also calculated the rate constant of the BTB reaction with the hydroxyl radical at 60 °C, equal to (1.3 ± 1) x 1010 M-1 s-1. Finally, based on our simulation model, we predicted the dominant radical(hydroxyl or sulfate) at different values of pH.
Citation
Mokhtar DJEHICHE , Cheikh MOKRANI , Azzedine BENYAHIA , NEDJMA Lahmar , ,(2021), Kinetic model for sulfate radical oxidation of bromothymol blue,7th International Conference on Advancement in Science and Technology,international islamic university malaysia
- 2021
-
2021
WASHING OF CONTAMINATED SOIL USING SOLAR THERMAL ENERGY
This work is a process for the remediation of contaminated soil, in which solar energy is an important factor. This procedure differs from other decontamination techniques by the absence of electric tools and by the replacement of chemical agents by solar thermal energy. Basing on our previous works, the process consists in transforming water from a liquid to a gaseous state (by using solar thermal energy) in a multi-washing process of the polluted soil. . The system is composed of a solar collector for water evaporation and a reservoir for soil decontamination, with a passage that ensures water circulation. Keywords: Soil washing, solar thermal technologies
Citation
Mokhtar DJEHICHE , NEDJMA Lahmar , ,(2021), WASHING OF CONTAMINATED SOIL USING SOLAR THERMAL ENERGY,INTERNATIONAL CONFERENCE ON NATURAL SCIENCES AND TECHNOLOGIES,Chypre du Nord
- 2021
-
2021
Oxidation of Rhodamine B by unactivated persulfate
Currently, large quantities of refractory chemicals (pollutants) are produced and without effective treatment, these can cause serious health problems (Salazar et al., 2012). Dyes are part of the organic pollutants, they are used in many industrial sectors (textile, plastic, pharmaceutical products, paint and food) (Behnajady&Modirshahla, 2006). Consequently, the effects of dyes in water are not limited to toxicity, but also include the reduction of dissolved oxygen and the interruption of photosynthetic processes (Inyinbor et al., 2015). Rhodamine B is a fluorescent dye, widely used in the textile and food industry, and as a fluorescent tracer in water to determine the rate and direction of flow in underground rivers. In order to eliminate the risks that may be caused by RhB, various technologies have been applied to eliminate RhB, including the activated sludge process(S. Yang et al., 2020), ion exchange(Labanda et al., 2011), photocatalysis(Ju et al., 2008), chemicalflocculation(Kang et al., 2007), adsorption (Inyinbor et al., 2015) and activated persulfate (Liu et al., 2018; Mcheik & Jamal, 2013). Persulfate anion, peroxodisulfate (S2O8-2) is part of the in situ chemical oxidation techniques (ISCO), it presents an efficiency in the degradation of recalcitrant organic matter, but little used in industrial processes and water treatment compared to other oxidizing agents (permanganate, hydrogen peroxide and ozone) (Chen & Huang, 2015). So we have less information about its reaction chemistry.As mentioned in the work of(Mcheik & Jamal, 2013; B. Yang et al., 2021), discoloration of cationic dyes by peroxodisulfate(PDS) without activation is closely related to the charge carried by PDS and deys. PDS dissociates to produce a persulfate ion with two negative chargesThe degradation kinetics of Rhodamine B (RhB) in the presence of potassium persulfate (KPS) in acidic medium (pH 3) was studied. We have exploited the experimental results to understand the mechanism of this reaction. Based on our calculation and simulation methodsthat we developed in our previous works (Djehiche et al., 2011a, 2011b), we determined, the rate constant of the reaction of RhB with KPS at 25 °C equal to 0.045 M-1 s-1 andwe studied the effect of temperature on the reaction. . Keywords: Persulfate, rhodamine B, degradation kinetics, oxidation. References Behnajady, M. A., & Modirshahla, N. (2006). Evaluation of Electrical Energy Per Order ( EEO ) with Kinetic Modeling on Photooxidative Degradation of C. I. Acid Orange 7 in a Tubular Continuous-Flow Photoreactor. Industrial & Engineering Chemistry Research, 45(2), 553‑557. https://doi.org/10.1021/ie050111c Chen, W.-S., & Huang, C.-P. (2015). Mineralization of aniline in aqueous solution by electrochemical activation of persulfate. Chemosphere, 125, 175‑181. https://doi.org/10.1016/j.chemosphere.2014.12.053 Djehiche, M., Tomas, A., Fittschen, C., & Coddeville, P. (2011a). First Direct Detection of HONO in the Reaction of Methylnitrite (CH 3 ONO) with OH Radicals. Environmental Science & Technology, 45, 608‑614. https://doi.org/10.1021/es103076e Djehiche, M., Tomas, A., Fittschen, C., & Coddeville, P. (2011b). First Cavity Ring-Down Spectroscopy HO 2 Measurements in a Large Photoreactor. Zeitschrift Für Physikalische Chemie, 225, 938‑992. https://doi.org/10.1524/zpch.2011.0143 Inyinbor, A. A., Adekola, F. A., & Olatunji, G. A. (2015). Adsorption of Rhodamine B dye from aqueous solution on Irvingia gabonensis biomass : Kinetics and thermodynamics studies. South African Journal of Chemistry, 68. https://doi.org/10.17159/0379-4350/2015/v68a17 Ju, D. J., Byun, I. G., Park, J. J., Lee, C. H., Ahn, G. H., & Park, T. J. (2008). Biosorption of a reactive dye (Rhodamine-B) from an aqueous solution using dried biomass of activated sludge. Bioresource Technology, 99(17), 7971‑7975. https://doi.org/10.1016/j.biortech.2008.03.061 Kang, Q., Gao, B., Yue, Q., Zhou, W., & Shen, D. (2007). Residual color profiles of reactive dyes mixture during a chemical flocculation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 299(1‑3), 45‑53. https://doi.org/10.1016/j.colsurfa.2006.11.021 Labanda, J., Sabaté, J., & Llorens, J. (2011). Experimental and modeling study of the adsorption of single and binary dye solutions with an ion-exchange membrane adsorber. Chemical Engineering Journal, 166(2), 536‑543. https://doi.org/10.1016/j.cej.2010.11.013 Liu, Y., Guo, H., Zhang, Y., Cheng, X., Zhou, P., Zhang, G., Wang, J., Tang, P., Ke, T., & Li, W. (2018). Heterogeneous activation of persulfate for Rhodamine B degradation with 3D flower sphere-like BiOI/Fe3O4 microspheres under visible light irradiation. Separation and Purification Technology, 192, 88‑98. https://doi.org/10.1016/j.seppur.2017.09.045 Mcheik, A. H., & Jamal, M. M. E. (2013). KINETIC STUDY OF THE DISCOLORATION OF RHODAMINE B WITH PERSULFATE, IRON ACTIVATION. Journal of Chemical Technology and Metallurgy, 357‑365. Salazar, R., Brillas, E., & Sirés, I. (2012). Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3. Applied Catalysis B: Environmental, 115‑116, 107‑116. https://doi.org/10.1016/j.apcatb.2011.12.026 Yang, B., Luo, Q., Li, Q., Meng, Y., Lingli, L., & Liu, Y. (2021). Selective oxidation and direct decolorization of cationic dyes by persulfate without activation. Water Science and Technology, 83(11), 2744‑2752. https://doi.org/10.2166/wst.2021.177 Yang, S., Feng, Y., Liu, N., Zhao, Y., Wang, X., Zhang, Z., Chen, H., & Yu, Y. (2020). Enhancement on the removal of Rhodamine B (RhB) by means of the Enlarged Anode Electric Biological (EAEB) reactor. Chemosphere, 245, 125566. https://doi.org/10.1016/j.chemosphere.2019.125566
Citation
NEDJMA Lahmar , ,(2021), Oxidation of Rhodamine B by unactivated persulfate,international covid-19 and current issues congress,turquie